Emulating computer experiments of transport infrastructure slope stability using Gaussian processes and Bayesian inference

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE DataCentric Engineering Pub Date : 2021-09-06 DOI:10.1017/dce.2021.14
A. Svalova, P. Helm, D. Prangle, M. Rouainia, S. Glendinning, D. Wilkinson
{"title":"Emulating computer experiments of transport infrastructure slope stability using Gaussian processes and Bayesian inference","authors":"A. Svalova, P. Helm, D. Prangle, M. Rouainia, S. Glendinning, D. Wilkinson","doi":"10.1017/dce.2021.14","DOIUrl":null,"url":null,"abstract":"Abstract We propose using fully Bayesian Gaussian process emulation (GPE) as a surrogate for expensive computer experiments of transport infrastructure cut slopes in high-plasticity clay soils that are associated with an increased risk of failure. Our deterioration experiments simulate the dissipation of excess pore water pressure and seasonal pore water pressure cycles to determine slope failure time. It is impractical to perform the number of computer simulations that would be sufficient to make slope stability predictions over a meaningful range of geometries and strength parameters. Therefore, a GPE is used as an interpolator over a set of optimally spaced simulator runs modeling the time to slope failure as a function of geometry, strength, and permeability. Bayesian inference and Markov chain Monte Carlo simulation are used to obtain posterior estimates of the GPE parameters. For the experiments that do not reach failure within model time of 184 years, the time to failure is stochastically imputed by the Bayesian model. The trained GPE has the potential to inform infrastructure slope design, management, and maintenance. The reduction in computational cost compared with the original simulator makes it a highly attractive tool which can be applied to the different spatio-temporal scales of transport networks.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2021.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract We propose using fully Bayesian Gaussian process emulation (GPE) as a surrogate for expensive computer experiments of transport infrastructure cut slopes in high-plasticity clay soils that are associated with an increased risk of failure. Our deterioration experiments simulate the dissipation of excess pore water pressure and seasonal pore water pressure cycles to determine slope failure time. It is impractical to perform the number of computer simulations that would be sufficient to make slope stability predictions over a meaningful range of geometries and strength parameters. Therefore, a GPE is used as an interpolator over a set of optimally spaced simulator runs modeling the time to slope failure as a function of geometry, strength, and permeability. Bayesian inference and Markov chain Monte Carlo simulation are used to obtain posterior estimates of the GPE parameters. For the experiments that do not reach failure within model time of 184 years, the time to failure is stochastically imputed by the Bayesian model. The trained GPE has the potential to inform infrastructure slope design, management, and maintenance. The reduction in computational cost compared with the original simulator makes it a highly attractive tool which can be applied to the different spatio-temporal scales of transport networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高斯过程和贝叶斯推理模拟交通基础设施边坡稳定性的计算机实验
摘要:我们建议使用完全贝叶斯高斯过程仿真(GPE)作为替代方法,对高塑性粘土中交通基础设施路堑边坡进行昂贵的计算机实验,这些边坡与破坏风险增加有关。我们的退化试验模拟了超孔隙水压力的耗散和季节性孔隙水压力循环,以确定边坡破坏时间。在一定的几何形状和强度参数范围内进行足够的边坡稳定性预测的计算机模拟是不切实际的。因此,GPE被用作一组最佳间隔模拟器运行的插值器,将斜坡破坏的时间建模为几何形状、强度和渗透率的函数。采用贝叶斯推理和马尔可夫链蒙特卡罗模拟得到GPE参数的后验估计。对于在184年模型时间内未达到失效的实验,采用贝叶斯模型随机推算失效时间。经过培训的GPE具有为基础设施边坡设计、管理和维护提供信息的潜力。与原始模拟器相比,计算成本的降低使其成为一种非常有吸引力的工具,可以应用于不同时空尺度的运输网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Semantic 3D city interfaces—Intelligent interactions on dynamic geospatial knowledge graphs Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes Finite element model updating with quantified uncertainties using point cloud data Evaluating probabilistic forecasts for maritime engineering operations Bottom-up forecasting: Applications and limitations in load forecasting using smart-meter data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1