Bio-based composite hydrogels for biomedical applications

Q1 Materials Science Multifunctional Materials Pub Date : 2020-05-14 DOI:10.1088/2399-7532/ab80d6
Sytze J Buwalda
{"title":"Bio-based composite hydrogels for biomedical applications","authors":"Sytze J Buwalda","doi":"10.1088/2399-7532/ab80d6","DOIUrl":null,"url":null,"abstract":"Hydrogels are three-dimensional, water-swollen polymer networks that have been widely studied for biomedical applications such as tissue engineering and the controlled delivery of biologically active agents. Since the pioneering work of Wichterle and Lim in the 1960s, hydrogel research has shifted from relatively simple single polymer networks to multifunctional composite hydrogels that better mimic the complex nature of living tissues. Bio-based polymers, which can be obtained from renewable natural resources, are attracting increasing attention for use in biomaterials due to the recent demands for a reduction in the environmental impact of the polymer industry and the development of a sustainable society. Moreover, bio-based polymers are often biodegradable and exhibit a significant level of biocompatibility and biomimicry, which are highly desired properties with regard to in vivo application. This review presents the state-of-the-art in the field of bio-based composite hydrogels for biomedical applications, thereby focusing on different types of polymeric components that have been combined with hydrogels to obtain materials with unique, synergistic properties: particles (including micelles and microspheres), electrospun fibres and nanocellulose. In addition, the challenges are described that should be overcome to facilitate clinical application of these versatile and environmentally responsible biomaterials.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/2399-7532/ab80d6","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multifunctional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-7532/ab80d6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 29

Abstract

Hydrogels are three-dimensional, water-swollen polymer networks that have been widely studied for biomedical applications such as tissue engineering and the controlled delivery of biologically active agents. Since the pioneering work of Wichterle and Lim in the 1960s, hydrogel research has shifted from relatively simple single polymer networks to multifunctional composite hydrogels that better mimic the complex nature of living tissues. Bio-based polymers, which can be obtained from renewable natural resources, are attracting increasing attention for use in biomaterials due to the recent demands for a reduction in the environmental impact of the polymer industry and the development of a sustainable society. Moreover, bio-based polymers are often biodegradable and exhibit a significant level of biocompatibility and biomimicry, which are highly desired properties with regard to in vivo application. This review presents the state-of-the-art in the field of bio-based composite hydrogels for biomedical applications, thereby focusing on different types of polymeric components that have been combined with hydrogels to obtain materials with unique, synergistic properties: particles (including micelles and microspheres), electrospun fibres and nanocellulose. In addition, the challenges are described that should be overcome to facilitate clinical application of these versatile and environmentally responsible biomaterials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学应用的生物基复合水凝胶
水凝胶是一种三维的、水膨胀的聚合物网络,已被广泛研究用于生物医学应用,如组织工程和生物活性剂的控制递送。自20世纪60年代Wichterle和Lim的开创性工作以来,水凝胶研究已经从相对简单的单一聚合物网络转向多功能复合水凝胶,后者更好地模拟了活组织的复杂性质。生物基聚合物可以从可再生的自然资源中获得,由于最近对减少聚合物工业对环境的影响和发展可持续社会的要求,生物基聚合物在生物材料中的应用越来越受到关注。此外,生物基聚合物通常是可生物降解的,并表现出显著的生物相容性和仿生学水平,这是关于体内应用的高度期望的特性。本综述介绍了生物医学应用中生物基复合水凝胶领域的最新进展,从而重点介绍了与水凝胶结合以获得具有独特协同性能的材料的不同类型的聚合物组分:颗粒(包括胶束和微球)、电纺纤维和纳米纤维素。此外,还描述了应克服的挑战,以促进这些多功能和对环境负责的生物材料的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multifunctional Materials
Multifunctional Materials Materials Science-Materials Science (miscellaneous)
CiteScore
12.80
自引率
0.00%
发文量
9
期刊最新文献
Sustainably Grown: The Underdog Robots of the Future Origami-patterned capacitor with programmed strain sensitivity Mechanical, electrochemical and multifunctional performance of a CFRP/carbon aerogel structural supercapacitor and its corresponding monofunctional equivalents Optically controlled grasping-slipping robot moving on tubular surfaces Encapsulation and on-demand release of functional materials from conductive nanofibers via electrical signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1