Graph Exploration with Embedding-Guided Layouts

IF 4.7 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING IEEE Transactions on Visualization and Computer Graphics Pub Date : 2022-08-29 DOI:10.48550/arXiv.2208.13699
Zhiwei Tai, Leixian Shen, Enya Shen, Jianmin Wang
{"title":"Graph Exploration with Embedding-Guided Layouts","authors":"Zhiwei Tai, Leixian Shen, Enya Shen, Jianmin Wang","doi":"10.48550/arXiv.2208.13699","DOIUrl":null,"url":null,"abstract":"Node-link diagrams are widely used to visualize graphs. Most graph layout algorithms only use graph topology for aesthetic goals (e.g., minimize node occlusions and edge crossings) or use node attributes for exploration goals (e.g., preserve visible communities). Existing hybrid methods that bind the two perspectives still suffer from various generation restrictions (e.g., limited input types and required manual adjustments and prior knowledge of graphs) and the imbalance between aesthetic and exploration goals. In this paper, we propose a flexible embedding-based graph exploration pipeline to enjoy the best of both graph topology and node attributes. First, we leverage embedding algorithms for attributed graphs to encode the two perspectives into latent space. Then, we present an embedding-driven graph layout algorithm, GEGraph, which can achieve aesthetic layouts with better community preservation to support an easy interpretation of the graph structure. Next, graph explorations are extended based on the generated graph layout and insights extracted from the embedding vectors. Illustrated with examples, we build a layout-preserving aggregation method with Focus+Context interaction and a related nodes searching approach with multiple proximity strategies. Finally, we conduct quantitative and qualitative evaluations, a user study, and two case studies to validate our approach.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.13699","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

Node-link diagrams are widely used to visualize graphs. Most graph layout algorithms only use graph topology for aesthetic goals (e.g., minimize node occlusions and edge crossings) or use node attributes for exploration goals (e.g., preserve visible communities). Existing hybrid methods that bind the two perspectives still suffer from various generation restrictions (e.g., limited input types and required manual adjustments and prior knowledge of graphs) and the imbalance between aesthetic and exploration goals. In this paper, we propose a flexible embedding-based graph exploration pipeline to enjoy the best of both graph topology and node attributes. First, we leverage embedding algorithms for attributed graphs to encode the two perspectives into latent space. Then, we present an embedding-driven graph layout algorithm, GEGraph, which can achieve aesthetic layouts with better community preservation to support an easy interpretation of the graph structure. Next, graph explorations are extended based on the generated graph layout and insights extracted from the embedding vectors. Illustrated with examples, we build a layout-preserving aggregation method with Focus+Context interaction and a related nodes searching approach with multiple proximity strategies. Finally, we conduct quantitative and qualitative evaluations, a user study, and two case studies to validate our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图形探索与嵌入引导布局
节点链接图被广泛用于可视化图形。大多数图布局算法仅使用图拓扑来实现美学目标(例如,最小化节点遮挡和边缘交叉)或使用节点属性来实现探索目标(例如,保留可见社区)。现有的结合两种视角的混合方法仍然受到各种生成限制(例如,有限的输入类型,需要手动调整和对图的先验知识)以及美学和探索目标之间的不平衡。在本文中,我们提出了一种灵活的基于嵌入的图探索管道,以充分利用图拓扑和节点属性的优点。首先,我们利用属性图的嵌入算法将两个透视图编码到潜在空间中。然后,我们提出了一种嵌入驱动的图形布局算法GEGraph,该算法可以实现美观的布局,并且具有更好的社区保存性,以支持易于解释的图结构。接下来,基于生成的图形布局和从嵌入向量中提取的见解扩展图形探索。通过实例说明,我们构建了一种具有焦点+上下文交互的布局保持聚合方法和一种具有多个邻近策略的相关节点搜索方法。最后,我们进行定量和定性评估,用户研究和两个案例研究来验证我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics 工程技术-计算机:软件工程
CiteScore
10.40
自引率
19.20%
发文量
946
审稿时长
4.5 months
期刊介绍: TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.
期刊最新文献
EventPointMesh: Human Mesh Recovery Solely From Event Point Clouds A Multi-Level Task Framework for Event Sequence Analysis Who Let the Guards Out: Visual Support for Patrolling Games The Language of Infographics: Toward Understanding Conceptual Metaphor Use in Scientific Storytelling Understanding Visualization Authoring Techniques for Genomics Data in the Context of Personas and Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1