A GSM-Based Fault Detection on Overhead Distribution Lines

Charles Ofori, Joseph Cudjoe Attachie, Felix Obeng-Adjapong
{"title":"A GSM-Based Fault Detection on Overhead Distribution Lines","authors":"Charles Ofori, Joseph Cudjoe Attachie, Felix Obeng-Adjapong","doi":"10.25077/jnte.v12n2.986.2023","DOIUrl":null,"url":null,"abstract":"Power distribution in Ghana is managed by the Electricity Company of Ghana (ECG) which is responsible for ensuring accessibility of electricity to consumers. One of the challenges that affect the effective operation of ECG is the slow response to faults on the overhead distribution lines. Fault detection on the distribution lines is a very tedious activity but a necessary procedure to ensure efficient power distribution to consumers. This paper seeks to design a system that can detect faults, the type of faults and their location before they cause any casualties to transformers and other power system equipment. This would replace the primitive method of patrolling and manual inspection of faults currently done by the Electricity Company of Ghana (ECG). This objective was achieved using a GSM-based system on an Arduino platform and ATmega 328P microcontroller to locate the occurrence of faults efficiently. Faults are introduced into the system by triggering the type of fault on the Arduino platform which opens the corresponding relay of the line fault. The opening of this relay sends a signal to the microcontroller and a corresponding LED which switches to display the type of fault. The microcontroller then communicates to the GSM module which displays the said fault and location on a display screen with the help of a virtual terminal. This system was tested under the various unsymmetrical faults to show the efficiency of the system using C++ programming. The simulation shows that the system offers a fast fault response time.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n2.986.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power distribution in Ghana is managed by the Electricity Company of Ghana (ECG) which is responsible for ensuring accessibility of electricity to consumers. One of the challenges that affect the effective operation of ECG is the slow response to faults on the overhead distribution lines. Fault detection on the distribution lines is a very tedious activity but a necessary procedure to ensure efficient power distribution to consumers. This paper seeks to design a system that can detect faults, the type of faults and their location before they cause any casualties to transformers and other power system equipment. This would replace the primitive method of patrolling and manual inspection of faults currently done by the Electricity Company of Ghana (ECG). This objective was achieved using a GSM-based system on an Arduino platform and ATmega 328P microcontroller to locate the occurrence of faults efficiently. Faults are introduced into the system by triggering the type of fault on the Arduino platform which opens the corresponding relay of the line fault. The opening of this relay sends a signal to the microcontroller and a corresponding LED which switches to display the type of fault. The microcontroller then communicates to the GSM module which displays the said fault and location on a display screen with the help of a virtual terminal. This system was tested under the various unsymmetrical faults to show the efficiency of the system using C++ programming. The simulation shows that the system offers a fast fault response time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gsm的架空配电线路故障检测
加纳的电力分配由加纳电力公司(ECG)管理,该公司负责确保消费者能够获得电力。影响心电图有效运行的难题之一是架空配电线路对故障的响应速度慢。配电线路故障检测是一项非常繁琐的工作,但却是保证用户高效配电的必要步骤。本文旨在设计一个能够在故障对变压器和其他电力系统设备造成任何伤亡之前检测故障、故障类型和故障位置的系统。这将取代加纳电力公司(ECG)目前进行的巡逻和人工检查故障的原始方法。这一目标是在Arduino平台上使用基于gsm的系统和atmega328p微控制器来有效地定位故障的发生。通过在Arduino平台上触发故障类型将故障引入系统,从而打开线路故障对应的继电器。该继电器的打开向微控制器发送信号,相应的LED开关显示故障类型。然后,微控制器与GSM模块通信,GSM模块借助虚拟终端在显示屏上显示所述故障和位置。本系统在各种不对称故障下进行了测试,用c++编程验证了系统的有效性。仿真结果表明,该系统具有较快的故障响应速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
20
期刊最新文献
Development of DC Motor Speed Control Using PID Based on Arduino and Matlab For Laboratory Trainer IoT-Based Disaster Response Robot for Victim Identification in Building Collapses Techno-Economic Analysis for Raja Ampat Off-Grid System Comparative Analysis of Two-Stage and Single-Stage Models in Batteryless PV Systems for Motor Power Supply Enhanced Identification of Valvular Heart Diseases through Selective Phonocardiogram Features Driven by Convolutional Neural Networks (SFD-CNN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1