Mechanical Response of Metal Solenoids Subjected to Electric Currents

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Elasticity Pub Date : 2023-04-25 DOI:10.1007/s10659-023-10015-y
R. S. Elliott, N. Triantafyllidis
{"title":"Mechanical Response of Metal Solenoids Subjected to Electric Currents","authors":"R. S. Elliott,&nbsp;N. Triantafyllidis","doi":"10.1007/s10659-023-10015-y","DOIUrl":null,"url":null,"abstract":"<div><p>Solenoids, ubiquitous in electrical engineering applications, are devices formed from a coil of wire that use electric current to produce a magnetic field. In contrast to typical electrical engineering applications that pertain to their magnetic field, of interest here is their use as actuators by studying their mechanical deformation. An analytically tractable model of parallel, coaxial circular rings is used to find the solenoid’s axial deformation when subjected to a combined electrical (current) and mechanical (axial force) loading. Both finite and infinite solenoids are considered and their equilibrium configurations as well as their stability are investigated as functions of their geometry and applied current intensity.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-023-10015-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solenoids, ubiquitous in electrical engineering applications, are devices formed from a coil of wire that use electric current to produce a magnetic field. In contrast to typical electrical engineering applications that pertain to their magnetic field, of interest here is their use as actuators by studying their mechanical deformation. An analytically tractable model of parallel, coaxial circular rings is used to find the solenoid’s axial deformation when subjected to a combined electrical (current) and mechanical (axial force) loading. Both finite and infinite solenoids are considered and their equilibrium configurations as well as their stability are investigated as functions of their geometry and applied current intensity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电流作用下金属螺线管的机械响应
螺线管在电气工程应用中无处不在,它是一种由线圈组成的装置,利用电流产生磁场。与典型的与磁场相关的电气工程应用相反,这里感兴趣的是通过研究它们的机械变形将它们用作致动器。利用一种可解析处理的平行同轴圆环模型,研究了电磁阀在受到电(电流)和机械(轴向力)联合载荷时的轴向变形。考虑了有限螺线管和无限螺线管,并研究了它们的平衡结构及其稳定性,作为它们的几何形状和施加电流强度的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
期刊最新文献
Initial Stresses in a Twisted Porous Fluid-Saturated Cylinder New Perspectives on Torsional Rigidity and Polynomial Approximations of z-bar A Morphoelastic Shell Theory of Biological Invagination in Embryos A Direct Approach to the Polar Representation of Plane Tensors The Micro-Bond Potential and Stress Tensor in Peridynamics Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1