Hybrid Optimization Strategy for Optimal Location and Sizing of DG in Distribution Networks

Tecnura Pub Date : 2020-10-01 DOI:10.14483/22487638.16606
W. Gil-González, O. Montoya, L. Grisales-Noreña, C. A. Ramírez Vanegas, Alexander Molina Cabrera
{"title":"Hybrid Optimization Strategy for Optimal Location and Sizing of DG in Distribution Networks","authors":"W. Gil-González, O. Montoya, L. Grisales-Noreña, C. A. Ramírez Vanegas, Alexander Molina Cabrera","doi":"10.14483/22487638.16606","DOIUrl":null,"url":null,"abstract":"Objective: This paper presents a hybrid optimization methodology for the optimal location and sizing of distributed generators (DG) in electrical distribution networks. We propose a mixed-integer nonlinear problem (MINLP) model for the mathematical formulation, whose objective function is the minimizing of power losses due to the Joule effect in conductors. The constraints we considered include active and reactive power balance, voltage regulation, percentage of penetration of DG into the distribution network, and the total amount of DG allowed in such network. Methodology: To solve the MINLP model, we employed a master-slave strategy that uses the Chu-Beasley genetic algorithm (CBGA) and the optimal power flow (OPF) model as the master and slave algorithms, respectively. This hybrid technique helps reduce the complexity of the MINLP model by eliminating binary variables through the master algorithm and then solving the resulting nonlinear problem (NLP), which corresponds to the OPF model, and uses a classical interior-point method available in MATLAB’s fmincon toolbox. Results: We tested the efficiency and robustness of the proposed methodology in 33and 69-node radial distribution networks. The results show its high performance in terms of power loss reduction and final sizing of DG. Conclusions: The results obtained in the test systems under analysis reveal that there is a direct and proportional relationship between technical losses, the percentage of distributed generation penetration, and the number of generators available.","PeriodicalId":30372,"journal":{"name":"Tecnura","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecnura","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14483/22487638.16606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Objective: This paper presents a hybrid optimization methodology for the optimal location and sizing of distributed generators (DG) in electrical distribution networks. We propose a mixed-integer nonlinear problem (MINLP) model for the mathematical formulation, whose objective function is the minimizing of power losses due to the Joule effect in conductors. The constraints we considered include active and reactive power balance, voltage regulation, percentage of penetration of DG into the distribution network, and the total amount of DG allowed in such network. Methodology: To solve the MINLP model, we employed a master-slave strategy that uses the Chu-Beasley genetic algorithm (CBGA) and the optimal power flow (OPF) model as the master and slave algorithms, respectively. This hybrid technique helps reduce the complexity of the MINLP model by eliminating binary variables through the master algorithm and then solving the resulting nonlinear problem (NLP), which corresponds to the OPF model, and uses a classical interior-point method available in MATLAB’s fmincon toolbox. Results: We tested the efficiency and robustness of the proposed methodology in 33and 69-node radial distribution networks. The results show its high performance in terms of power loss reduction and final sizing of DG. Conclusions: The results obtained in the test systems under analysis reveal that there is a direct and proportional relationship between technical losses, the percentage of distributed generation penetration, and the number of generators available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配电网DG最优选址与规模的混合优化策略
目的:本文提出了一种混合优化方法,用于配电网中分布式发电机的最佳位置和尺寸。我们为数学公式提出了一个混合整数非线性问题(MINLP)模型,其目标函数是最小化导体中焦耳效应引起的功率损耗。我们考虑的约束条件包括有功和无功功率平衡、电压调节、DG进入配电网的百分比以及此类网络中允许的DG总量。方法:为了求解MINLP模型,我们采用了主从策略,该策略分别使用Chu-Beasley遗传算法(CBGA)和最优潮流(OPF)模型作为主算法和从算法。这种混合技术通过主算法消除二进制变量,然后解决相应于OPF模型的非线性问题(NLP),并使用MATLAB的fmincon工具箱中的经典内点方法,有助于降低MINLP模型的复杂性。结果:我们在33和69节点径向配电网中测试了所提出方法的有效性和稳健性。结果表明,它在降低功率损耗和DG最终尺寸方面具有很高的性能。结论:在所分析的测试系统中获得的结果表明,技术损失、分布式发电渗透率和可用发电机数量之间存在直接的比例关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
29
审稿时长
40 weeks
期刊最新文献
Determinantes de la Transferencia Tecnológica Universitaria en Colombia Evaluación de un residuo de la combustión de carbón como reemplazo parcial de arena en la producción de ladrillos cerámicos Optimal integration of D-STATCOMs in electrical distribution systems for investment and operating cost reduction by using a Master-Slave Methodology between GA/PSO El conocimiento previo cultural como factor de influencia en la interculturalidad y movilidad estudiantil universitaria Análisis energético de edificios, mediante termografía infrarroja aplicada con un dron cuadricóptero Parrot Anafi thermal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1