Performance evaluation of multiple particulate matter monitoring instruments under higher temperatures and relative humidity in Southeast Asia and design of an affordable monitoring instrument (ManPMS)
Nam Duong Thanh, H. T. Tran Thi, Trung Nguyen Quang, Huy Nguyen Van, Giang Hoang Nguyen, Quyet Nguyen Huu, Tung Tran Son
{"title":"Performance evaluation of multiple particulate matter monitoring instruments under higher temperatures and relative humidity in Southeast Asia and design of an affordable monitoring instrument (ManPMS)","authors":"Nam Duong Thanh, H. T. Tran Thi, Trung Nguyen Quang, Huy Nguyen Van, Giang Hoang Nguyen, Quyet Nguyen Huu, Tung Tran Son","doi":"10.1080/10739149.2023.2193635","DOIUrl":null,"url":null,"abstract":"Abstract The rapid industrialization of nations in Southeast Asia (SEA) has led to a decline in these countries’ air quality, including high levels of particulate matter (PM). Monitoring these air pollutants is crucial to understanding the pollution status of the area and developing management plans for improvement. The metrological conditions in the region present challenges as high temperature and high humidity have been known to cause errors in the measurements. This study investigated the performance of five PM monitoring instruments with different working principles. The air temperature was mostly over 25 °C with relative humidity usually remaining above 80%, which is typical of SEA weather. Measurements from all instruments had good correlations with each other as their linear regressions yielded slopes of 1 ± 0.15 and R2 > 0.65. Moreover, this study found that depending on the chosen reference instrument, not all factors affect the devices equally. In particular, using Partisol as a reference, the PM2.5 concentration, air temperature, and relative humidity had less impact upon the relative bias level compared to using Leckel as a reference. In addition, the high cost of monitoring instruments also poses financial constraints on how many monitoring stations can be deployed. To tackle this issue, this study presents ManPMS whose design is based on that of the USEPA Title 40 Part 50 with slight modifications. The cost to manufacture and assemble the instrument was only 2/3 the price of a typical instrument with similar performance.","PeriodicalId":13547,"journal":{"name":"Instrumentation Science & Technology","volume":"51 1","pages":"660 - 680"},"PeriodicalIF":1.3000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instrumentation Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10739149.2023.2193635","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The rapid industrialization of nations in Southeast Asia (SEA) has led to a decline in these countries’ air quality, including high levels of particulate matter (PM). Monitoring these air pollutants is crucial to understanding the pollution status of the area and developing management plans for improvement. The metrological conditions in the region present challenges as high temperature and high humidity have been known to cause errors in the measurements. This study investigated the performance of five PM monitoring instruments with different working principles. The air temperature was mostly over 25 °C with relative humidity usually remaining above 80%, which is typical of SEA weather. Measurements from all instruments had good correlations with each other as their linear regressions yielded slopes of 1 ± 0.15 and R2 > 0.65. Moreover, this study found that depending on the chosen reference instrument, not all factors affect the devices equally. In particular, using Partisol as a reference, the PM2.5 concentration, air temperature, and relative humidity had less impact upon the relative bias level compared to using Leckel as a reference. In addition, the high cost of monitoring instruments also poses financial constraints on how many monitoring stations can be deployed. To tackle this issue, this study presents ManPMS whose design is based on that of the USEPA Title 40 Part 50 with slight modifications. The cost to manufacture and assemble the instrument was only 2/3 the price of a typical instrument with similar performance.
期刊介绍:
Instrumentation Science & Technology is an internationally acclaimed forum for fast publication of critical, peer reviewed manuscripts dealing with innovative instrument design and applications in chemistry, physics biotechnology and environmental science. Particular attention is given to state-of-the-art developments and their rapid communication to the scientific community.
Emphasis is on modern instrumental concepts, though not exclusively, including detectors, sensors, data acquisition and processing, instrument control, chromatography, electrochemistry, spectroscopy of all types, electrophoresis, radiometry, relaxation methods, thermal analysis, physical property measurements, surface physics, membrane technology, microcomputer design, chip-based processes, and more.
Readership includes everyone who uses instrumental techniques to conduct their research and development. They are chemists (organic, inorganic, physical, analytical, nuclear, quality control) biochemists, biotechnologists, engineers, and physicists in all of the instrumental disciplines mentioned above, in both the laboratory and chemical production environments. The journal is an important resource of instrument design and applications data.