Uncertainty quantification of the DTM2020 thermosphere model

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2021-09-09 DOI:10.1051/swsc/2021034
C. Boniface, S. Bruinsma
{"title":"Uncertainty quantification of the DTM2020 thermosphere model","authors":"C. Boniface, S. Bruinsma","doi":"10.1051/swsc/2021034","DOIUrl":null,"url":null,"abstract":"Aims: The semi-empirical Drag Temperature Models (DTM) calculate the Earth’s upper atmosphere’s temperature, density, and composition. They were applied mainly for spacecraft orbit computation. We developed an uncertainty tool that we implemented in the DTM2020 thermosphere model. The model is assessed and compared with the recently HASDM neutral density released publicly in 2020. Methods: The total neutral density dataset covers all high-resolution CHAMP, GRACE, GOCE, and SWARM data spanning almost two solar cycles. We constructed the uncertainty model using statistical binning analysis and least-square fitting techniques, allowing the development of a global sigma error model to function the main variabilities driving the thermosphere state. The model is represented mathematically by a nonlinear manifold approximation in a 6-D space parameter. Results: The results reveal that the altitude parameter presents the most notable error range during quiet and moderate magnetic activity (Kp ≤ 5). However, the most considerable uncertainty appears during severe or extreme geomagnetic activities. The comparison with density data provided by the SET HASDM database highlights some coherent features on the mechanisms occurring in the thermosphere. Moreover, it confirms the tool’s relevance to provide a qualitative database of neutral densities uncertainties values deduced from the DTM2020 model.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/swsc/2021034","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 9

Abstract

Aims: The semi-empirical Drag Temperature Models (DTM) calculate the Earth’s upper atmosphere’s temperature, density, and composition. They were applied mainly for spacecraft orbit computation. We developed an uncertainty tool that we implemented in the DTM2020 thermosphere model. The model is assessed and compared with the recently HASDM neutral density released publicly in 2020. Methods: The total neutral density dataset covers all high-resolution CHAMP, GRACE, GOCE, and SWARM data spanning almost two solar cycles. We constructed the uncertainty model using statistical binning analysis and least-square fitting techniques, allowing the development of a global sigma error model to function the main variabilities driving the thermosphere state. The model is represented mathematically by a nonlinear manifold approximation in a 6-D space parameter. Results: The results reveal that the altitude parameter presents the most notable error range during quiet and moderate magnetic activity (Kp ≤ 5). However, the most considerable uncertainty appears during severe or extreme geomagnetic activities. The comparison with density data provided by the SET HASDM database highlights some coherent features on the mechanisms occurring in the thermosphere. Moreover, it confirms the tool’s relevance to provide a qualitative database of neutral densities uncertainties values deduced from the DTM2020 model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DTM2020热层模式的不确定度量化
目的:半经验拖曳温度模型(DTM)计算地球高层大气的温度、密度和成分。它们主要用于航天器轨道计算。我们开发了一个不确定性工具,并在DTM2020热层模型中实现。对该模型进行了评估,并将其与最近于2020年公开发布的HASDM中性密度进行了比较。方法:总中性密度数据集涵盖了几乎两个太阳周期的所有高分辨率CHAMP、GRACE、GOCE和SWARM数据。我们使用统计装仓分析和最小二乘拟合技术构建了不确定性模型,从而开发了一个全局西格玛误差模型,以函数化驱动热层状态的主要变量。该模型在数学上由6-D空间参数中的非线性流形近似表示。结果:在安静和中等磁活动期间(Kp≤5),海拔参数的误差范围最显著。然而,最显著的不确定性出现在严重或极端的地磁活动期间。与SET HASDM数据库提供的密度数据的比较突出了热层机制的一些连贯特征。此外,它还证实了该工具提供从DTM2020模型推导出的中性密度不确定性值的定性数据库的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1