UTILIZATION OF MODIFIED PLASTIC WASTE ON THE POROUS CONCRETE BLOCK CONTAINING FINE AGGREGATE

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY Jurnal Teknologi-Sciences & Engineering Pub Date : 2023-06-25 DOI:10.11113/jurnalteknologi.v85.19219
Steve W. M. Supit, Priyono -
{"title":"UTILIZATION OF MODIFIED PLASTIC WASTE ON THE POROUS CONCRETE BLOCK CONTAINING FINE AGGREGATE","authors":"Steve W. M. Supit, Priyono -","doi":"10.11113/jurnalteknologi.v85.19219","DOIUrl":null,"url":null,"abstract":"Modification of plastic waste to be use as a replacement of coarse aggregate on the manufacturing of porous concrete block is presented in this paper. Different proportions of sand content were used with percentage of 1%, 5% and 10% by total weight of the sample to investigate its effects on the performance of porous concrete blocks based on some conducted tests i.e., compression and flexural load resistance, porosity, and infiltration rate tests. The results show that the porous concrete block with 5% of sand addition showed better strength properties compared to other mixtures. With 5% modified PET coarse aggregate, the compressive strength decreased for about 26%. Similar trends can be also observed when using PP and HDPE plastic aggregate. However, the inclusion of PET aggregate in porous concrete blocks with 5% of sand inclusion does not significantly show better strength indicating the weak bonding between plastic and cement mortar was performed in porous concrete block matrix as evident through the Scanning Electron Microscopy analysis. The formation of pores and higher permeability can be also expected after adding PET plastic waste as seen in porosity and infiltration rate results. Furthermore, the utilization of coarse aggregate made from plastic waste in porous concrete blocks containing fine aggregate is a potential solution on plastic waste management for permeable pavement including foot traffic and light load application.","PeriodicalId":47541,"journal":{"name":"Jurnal Teknologi-Sciences & Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi-Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/jurnalteknologi.v85.19219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modification of plastic waste to be use as a replacement of coarse aggregate on the manufacturing of porous concrete block is presented in this paper. Different proportions of sand content were used with percentage of 1%, 5% and 10% by total weight of the sample to investigate its effects on the performance of porous concrete blocks based on some conducted tests i.e., compression and flexural load resistance, porosity, and infiltration rate tests. The results show that the porous concrete block with 5% of sand addition showed better strength properties compared to other mixtures. With 5% modified PET coarse aggregate, the compressive strength decreased for about 26%. Similar trends can be also observed when using PP and HDPE plastic aggregate. However, the inclusion of PET aggregate in porous concrete blocks with 5% of sand inclusion does not significantly show better strength indicating the weak bonding between plastic and cement mortar was performed in porous concrete block matrix as evident through the Scanning Electron Microscopy analysis. The formation of pores and higher permeability can be also expected after adding PET plastic waste as seen in porosity and infiltration rate results. Furthermore, the utilization of coarse aggregate made from plastic waste in porous concrete blocks containing fine aggregate is a potential solution on plastic waste management for permeable pavement including foot traffic and light load application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改性塑料垃圾在含细骨料多孔混凝土砌块上的利用
本文介绍了塑料废弃物的改性,以替代粗骨料用于多孔混凝土砌块的制造。通过抗压、抗弯荷载、孔隙率、渗透速率等试验,研究了不同掺砂比例对多孔混凝土砌块性能的影响,掺砂比例分别为试样总重量的1%、5%和10%。结果表明,掺砂量为5%的多孔混凝土砌块强度优于其他混合料;添加5%改性PET粗骨料,抗压强度降低约26%。在使用PP和HDPE塑料骨料时也可以观察到类似的趋势。然而,在含砂量为5%的多孔混凝土砌块中,PET骨料的强度并没有明显提高,这表明通过扫描电镜分析可以看出,多孔混凝土砌块基体中塑料与水泥砂浆之间存在弱粘结。从孔隙率和渗透率的结果可以看出,添加PET塑料废弃物后也可以形成孔隙和更高的渗透率。此外,在含有细骨料的多孔混凝土块中使用由塑料废物制成的粗骨料是一种潜在的解决方案,可用于包括步行交通和轻载应用在内的透水路面的塑料废物管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Jurnal Teknologi-Sciences & Engineering
Jurnal Teknologi-Sciences & Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.30
自引率
0.00%
发文量
96
期刊最新文献
A RECENT REVIEW OF THE SANDWICH-STRUCTURED COMPOSITE METAMATERIALS: STATIC AND DYNAMIC ANALYSIS ANALYSIS OF ACTIVE SECONDARY SUSPENSION WITH MODIFIED SKYHOOK CONTROLLER TO IMPROVE RIDE PERFORMANCE OF RAILWAY VEHICLE DESIGNING THE TECHNOLOGY FOR TURBIDITY SENSOR-BASED AUTOMATIC RIVER SEDIMENTATION MEASUREMENT CFD SIMULATION AND VALIDATION FOR MIXING VENTILATION SCALED-DOWN EMPTY AIRCRAFT CABIN USING OPENFOAM COMPARATIVE STUDY OF CONFIGURATIONS FOR PHOTOVOLTAIC-THERMOELECTRIC GENERATOR COGENERATION SYSTEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1