A Metrological Perspective on Reproducibility in NLP*

IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Linguistics Pub Date : 2022-12-01 DOI:10.1162/coli_a_00448
Anya Belz
{"title":"A Metrological Perspective on Reproducibility in NLP*","authors":"Anya Belz","doi":"10.1162/coli_a_00448","DOIUrl":null,"url":null,"abstract":"Abstract Reproducibility has become an increasingly debated topic in NLP and ML over recent years, but so far, no commonly accepted definitions of even basic terms or concepts have emerged. The range of different definitions proposed within NLP/ML not only do not agree with each other, they are also not aligned with standard scientific definitions. This article examines the standard definitions of repeatability and reproducibility provided by the meta-science of metrology, and explores what they imply in terms of how to assess reproducibility, and what adopting them would mean for reproducibility assessment in NLP/ML. It turns out the standard definitions lead directly to a method for assessing reproducibility in quantified terms that renders results from reproduction studies comparable across multiple reproductions of the same original study, as well as reproductions of different original studies. The article considers where this method sits in relation to other aspects of NLP work one might wish to assess in the context of reproducibility.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"48 1","pages":"1125-1135"},"PeriodicalIF":3.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00448","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Reproducibility has become an increasingly debated topic in NLP and ML over recent years, but so far, no commonly accepted definitions of even basic terms or concepts have emerged. The range of different definitions proposed within NLP/ML not only do not agree with each other, they are also not aligned with standard scientific definitions. This article examines the standard definitions of repeatability and reproducibility provided by the meta-science of metrology, and explores what they imply in terms of how to assess reproducibility, and what adopting them would mean for reproducibility assessment in NLP/ML. It turns out the standard definitions lead directly to a method for assessing reproducibility in quantified terms that renders results from reproduction studies comparable across multiple reproductions of the same original study, as well as reproductions of different original studies. The article considers where this method sits in relation to other aspects of NLP work one might wish to assess in the context of reproducibility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NLP再现性的计量学视角*
近年来,可重复性已经成为NLP和ML中越来越有争议的话题,但到目前为止,即使是基本的术语或概念也没有普遍接受的定义。NLP/ML中提出的不同定义的范围不仅彼此不一致,而且与标准的科学定义也不一致。本文考察了计量学元科学提供的可重复性和可重复性的标准定义,并探讨了它们在如何评估可重复性方面的含义,以及采用它们对NLP/ML中的可重复性评估意味着什么。事实证明,标准定义直接导致了一种量化评估再现性的方法,这种方法使得再现研究的结果在同一原始研究的多次再现中具有可比性,以及不同原始研究的再现。本文考虑了这种方法与NLP工作的其他方面的关系,人们可能希望在可重复性的背景下进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Linguistics
Computational Linguistics 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.
期刊最新文献
Generation and Polynomial Parsing of Graph Languages with Non-Structural Reentrancies Languages through the Looking Glass of BPE Compression Capturing Fine-Grained Regional Differences in Language Use through Voting Precinct Embeddings Machine Learning for Ancient Languages: A Survey Statistical Methods for Annotation Analysis by Silviu Paun, Ron Artstein, and Massimo Poesio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1