Sampling density to detect spatial dependence of potassium, calcium and magnesium in sandy soils

Jessé Alves Batista, Felippe Augusto Santos Oliveira, Mauricio Eduardo Silva Folador, Javier Zeballos Ruiz Junior, Gustavo Barbosa de Moura Batista, Tatiane Carla Silva, R. Montanari
{"title":"Sampling density to detect spatial dependence of potassium, calcium and magnesium in sandy soils","authors":"Jessé Alves Batista, Felippe Augusto Santos Oliveira, Mauricio Eduardo Silva Folador, Javier Zeballos Ruiz Junior, Gustavo Barbosa de Moura Batista, Tatiane Carla Silva, R. Montanari","doi":"10.13083/reveng.v30i1.14048","DOIUrl":null,"url":null,"abstract":"The sampling grid density for georeferenced soil collection must be large enough to allow the identification of the spatial dependence of attributes with representative accuracy of the cultivated area, but not large enough to make fertility mapping unfeasible. The objective of this study was to define, from the evaluation of geostatistical parameters obtained from a super dense soil sampling, an efficient grid for detecting the spatial dependence of potassium (K+), calcium (Ca2+), and magnesium (Mg2+) in a sandy soil. The experiment was conducted in a 3.2 hectare annatto crop (Bixa orellana L.), in 2017. The geostatistical grid consisted of 31 points per hectare, totaling 101 georeferenced points in an 18x18 m spacing. Soil was sampled at the depths of 0-0.20 m and 0.20-0.40 m. A strong spatial dependence was found for all soil attributes in both depths, while the semivariograms fitted to the spherical model with good coefficients of determination (R²) indicating a spatial correlation between the attributes. The range of spatial dependence was close to 100 m for all attributes in both layers. In sandy soils, an efficient sampling grid to detect the spatial dependence of K+, Ca2+ and Mg2+ must consider a semivariogram range of approximately 100 meters.","PeriodicalId":33461,"journal":{"name":"Engenharia na Agricultura","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engenharia na Agricultura","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13083/reveng.v30i1.14048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sampling grid density for georeferenced soil collection must be large enough to allow the identification of the spatial dependence of attributes with representative accuracy of the cultivated area, but not large enough to make fertility mapping unfeasible. The objective of this study was to define, from the evaluation of geostatistical parameters obtained from a super dense soil sampling, an efficient grid for detecting the spatial dependence of potassium (K+), calcium (Ca2+), and magnesium (Mg2+) in a sandy soil. The experiment was conducted in a 3.2 hectare annatto crop (Bixa orellana L.), in 2017. The geostatistical grid consisted of 31 points per hectare, totaling 101 georeferenced points in an 18x18 m spacing. Soil was sampled at the depths of 0-0.20 m and 0.20-0.40 m. A strong spatial dependence was found for all soil attributes in both depths, while the semivariograms fitted to the spherical model with good coefficients of determination (R²) indicating a spatial correlation between the attributes. The range of spatial dependence was close to 100 m for all attributes in both layers. In sandy soils, an efficient sampling grid to detect the spatial dependence of K+, Ca2+ and Mg2+ must consider a semivariogram range of approximately 100 meters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测沙质土壤中钾、钙、镁空间相关性的采样密度
地理参考土壤采集的采样网格密度必须足够大,以便能够以耕地面积的代表性精度识别属性的空间相关性,但又不足以使肥力制图变得不可行。本研究的目的是通过对超密土壤取样获得的地质统计参数的评估,确定一个有效的网格,用于检测沙质土壤中钾(K+)、钙(Ca2+)和镁(Mg2+)的空间依赖性。该实验于2017年在一种3.2公顷的红木作物(Bixa orellana L.)中进行。地质统计网格由每公顷31个点组成,总共101个地理参考点,间距为18x18m。在0-0.20 m和0.20-0.40 m的深度对土壤进行采样。发现两个深度的所有土壤属性都具有很强的空间相关性,而半方差图符合球形模型,具有良好的决定系数(R²),表明属性之间存在空间相关性。对于两个层中的所有属性,空间相关性的范围都接近100米。在沙质土壤中,检测K+、Ca2+和Mg2+的空间依赖性的有效采样网格必须考虑大约100米的半变异函数范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
35
审稿时长
24 weeks
期刊最新文献
Obtaining and physicochemical characterization of yacon derivatives Disease detection in citrus crops using optical and thermal remote sensing: a literature review Spatial variability of soil physical attributes under conservation management systems for sugarcane cultivation Esp8266 module use in animal production: a review Development and validation of cfd model for compost barn with artificial ventilation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1