{"title":"A review of cutting tools for ultra-precision machining","authors":"Ganesan G., Ganesh Malayath, R. Mote","doi":"10.1080/10910344.2023.2180751","DOIUrl":null,"url":null,"abstract":"Abstract Ultra-precision cutting (UPC) is an advanced machining process capable of fabricating components with a surface finish and dimensional accuracy in the nanometer range. The cutting tool edge should possess ultra-sharpness and controlled waviness to bring off a higher degree of finish and accuracy. It also should have high hardness, toughness, thermal resistance and chemical inertness. As the cutting-edge radius is in order of nm, the edge characterization is always arduous. Profound knowledge regarding the wear patterns of the UPC tools is indispensable as it will affect the machining quality to a great extent. Hence, to employ a cutting tool for UPC operations, one should know the different variants of UPC and their characteristics, different tool materials and their properties, geometries and how it affects machining accuracy, various edge preparation method and characterization techniques and their limitations, associated measurement errors, tool wear patterns and processes to control the wear. These diverse areas have to be brought under a single roof to systematically choose the material, geometry, and fabrication method for UPC tools. This article provides a comprehensive review of the research related to cutting tools of UPC to understand and evaluate the current trends in the development of UPC tools. Graphical abstract","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":"26 1","pages":"923 - 976"},"PeriodicalIF":2.7000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2023.2180751","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Ultra-precision cutting (UPC) is an advanced machining process capable of fabricating components with a surface finish and dimensional accuracy in the nanometer range. The cutting tool edge should possess ultra-sharpness and controlled waviness to bring off a higher degree of finish and accuracy. It also should have high hardness, toughness, thermal resistance and chemical inertness. As the cutting-edge radius is in order of nm, the edge characterization is always arduous. Profound knowledge regarding the wear patterns of the UPC tools is indispensable as it will affect the machining quality to a great extent. Hence, to employ a cutting tool for UPC operations, one should know the different variants of UPC and their characteristics, different tool materials and their properties, geometries and how it affects machining accuracy, various edge preparation method and characterization techniques and their limitations, associated measurement errors, tool wear patterns and processes to control the wear. These diverse areas have to be brought under a single roof to systematically choose the material, geometry, and fabrication method for UPC tools. This article provides a comprehensive review of the research related to cutting tools of UPC to understand and evaluate the current trends in the development of UPC tools. Graphical abstract
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining