Shannon entropy on near-infrared spectroscopy for nondestructively determining water content in oil palm

I. Novianty, W. Sholihah, G. P. Mindara, Muhammad Iqbal Nurulhaq, Anifatul Faricha, R. Sinambela, P. B. Purwandoko, M. A. Nanda
{"title":"Shannon entropy on near-infrared spectroscopy for nondestructively determining water content in oil palm","authors":"I. Novianty, W. Sholihah, G. P. Mindara, Muhammad Iqbal Nurulhaq, Anifatul Faricha, R. Sinambela, P. B. Purwandoko, M. A. Nanda","doi":"10.11591/ijece.v13i5.pp5397-5405","DOIUrl":null,"url":null,"abstract":"Indonesia is the world’s largest producer of palm oil. To preserve its competitive advantages, the Indonesian oil palm sector must expand high-quality palm oil output. In oil palm quality control, the water content is a crucial parameter as it can be used as a reference to determine the right harvest time. Thus, this study proposed a near-infrared (NIR) spectroscopy as a fast and non-destructive analysis to assess oil palm water content. NIR spectra were processed using Shannon entropy to describe the characteristics at each wavelength. In this study, oil palm fruit samples at various maturity levels were collected with eight different maturity fractions. Based on the analysis, the Shannon entropy value is closely related to any changes in the water content of palm oil. The entropy value has a decreasing trend as the water content increases. The proposed technique can predict the water content of an oil palm with satisfactory performance with values of 0.9746 of coefficient of determination (R2) and 2,487 of root mean square error (RMSE). Application of this model will lead to a fast and accurate prediction system related to oil palm water content.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5397-5405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Indonesia is the world’s largest producer of palm oil. To preserve its competitive advantages, the Indonesian oil palm sector must expand high-quality palm oil output. In oil palm quality control, the water content is a crucial parameter as it can be used as a reference to determine the right harvest time. Thus, this study proposed a near-infrared (NIR) spectroscopy as a fast and non-destructive analysis to assess oil palm water content. NIR spectra were processed using Shannon entropy to describe the characteristics at each wavelength. In this study, oil palm fruit samples at various maturity levels were collected with eight different maturity fractions. Based on the analysis, the Shannon entropy value is closely related to any changes in the water content of palm oil. The entropy value has a decreasing trend as the water content increases. The proposed technique can predict the water content of an oil palm with satisfactory performance with values of 0.9746 of coefficient of determination (R2) and 2,487 of root mean square error (RMSE). Application of this model will lead to a fast and accurate prediction system related to oil palm water content.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近红外光谱法无损测定油棕含水量的香农熵
印度尼西亚是世界上最大的棕榈油生产国。为了保持其竞争优势,印尼油棕行业必须扩大高品质棕榈油的产量。在油棕质量控制中,水分含量是一个至关重要的参数,它可以作为确定合适采收时间的参考。因此,本研究提出了一种快速、无损的近红外光谱分析方法来评估油棕的水分含量。利用香农熵对近红外光谱进行处理,描述各波长的特征。本研究采集了8种不同成熟度的油棕果实样品。通过分析可知,香农熵值与棕榈油含水量的变化密切相关。熵值随含水率的增加呈减小趋势。该方法预测油棕含水量的决定系数(R2)为0.9746,均方根误差(RMSE)为2487,结果令人满意。该模型的应用将建立一个快速准确的油棕含水率预测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
期刊最新文献
Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem Explainable extreme boosting model for breast cancer diagnosis Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition A thermally aware performance analysis of quantum cellular automata logic gates Technical and market evaluation of thermal generation power plants in the Colombia power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1