Mohamed Skander Daas, Billel Kenidra, Hamza Bouanaka, S. Chikhi
{"title":"An Efficient PSO-Based Algorithm for Finding Maximal Exact Match in Large DNA Sequences","authors":"Mohamed Skander Daas, Billel Kenidra, Hamza Bouanaka, S. Chikhi","doi":"10.1142/s1469026823500220","DOIUrl":null,"url":null,"abstract":"With the appearance of complete mammalian genomes, comparative approaches have experienced a recent upsurge. Searching maximal exact match is among the most used tasks in sequence searching within a larger DNA sequence or database. Many exact algorithms have been designed to deal with this problem. The best improvements made by these algorithms have led to a time and space complexity of O(n) and they remain practically less effective for large sequences. Heuristic methods will therefore be a good alternative to implement. In this work, we present an efficient heuristic algorithm based on PSO metaheuristic to deal with the problem of searching the maximal exact match of small searched sequences in large ones. The time and space complexity of the designed algorithm is of O(1). The experimental results showed the efficiency of the proposed search algorithm for finding maximal exact match in large sequences when compared with two other sequence searching algorithms.","PeriodicalId":45994,"journal":{"name":"International Journal of Computational Intelligence and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026823500220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the appearance of complete mammalian genomes, comparative approaches have experienced a recent upsurge. Searching maximal exact match is among the most used tasks in sequence searching within a larger DNA sequence or database. Many exact algorithms have been designed to deal with this problem. The best improvements made by these algorithms have led to a time and space complexity of O(n) and they remain practically less effective for large sequences. Heuristic methods will therefore be a good alternative to implement. In this work, we present an efficient heuristic algorithm based on PSO metaheuristic to deal with the problem of searching the maximal exact match of small searched sequences in large ones. The time and space complexity of the designed algorithm is of O(1). The experimental results showed the efficiency of the proposed search algorithm for finding maximal exact match in large sequences when compared with two other sequence searching algorithms.
期刊介绍:
The International Journal of Computational Intelligence and Applications, IJCIA, is a refereed journal dedicated to the theory and applications of computational intelligence (artificial neural networks, fuzzy systems, evolutionary computation and hybrid systems). The main goal of this journal is to provide the scientific community and industry with a vehicle whereby ideas using two or more conventional and computational intelligence based techniques could be discussed. The IJCIA welcomes original works in areas such as neural networks, fuzzy logic, evolutionary computation, pattern recognition, hybrid intelligent systems, symbolic machine learning, statistical models, image/audio/video compression and retrieval.