Scheduling Policies for Federated Learning in Wireless Networks: An Overview

Shi Wenqi, Sun Yuxuan, Huang Xiufeng, Zhou Sheng, Niu Zhisheng
{"title":"Scheduling Policies for Federated Learning in Wireless Networks: An Overview","authors":"Shi Wenqi, Sun Yuxuan, Huang Xiufeng, Zhou Sheng, Niu Zhisheng","doi":"10.12142/ZTECOM.202002003","DOIUrl":null,"url":null,"abstract":"Due to the increasing need for massive data analysis and machine learning model training at the network edge, as well as the rising concerns about data privacy, a new distrib⁃ uted training framework called federated learning (FL) has emerged and attracted much at⁃ tention from both academia and industry. In FL, participating devices iteratively update the local models based on their own data and contribute to the global training by uploading mod⁃ el updates until the training converges. Therefore, the computation capabilities of mobile de⁃ vices can be utilized and the data privacy can be preserved. However, deploying FL in re⁃ source-constrained wireless networks encounters several challenges, including the limited energy of mobile devices, weak onboard computing capability, and scarce wireless band⁃ width. To address these challenges, recent solutions have been proposed to maximize the convergence rate or minimize the energy consumption under heterogeneous constraints. In this overview, we first introduce the backgrounds and fundamentals of FL. Then, the key challenges in deploying FL in wireless networks are discussed, and several existing solu⁃ tions are reviewed. Finally, we highlight the open issues and future research directions in FL scheduling.","PeriodicalId":61991,"journal":{"name":"ZTE Communications","volume":"18 1","pages":"11-19"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZTE Communications","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.12142/ZTECOM.202002003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Due to the increasing need for massive data analysis and machine learning model training at the network edge, as well as the rising concerns about data privacy, a new distrib⁃ uted training framework called federated learning (FL) has emerged and attracted much at⁃ tention from both academia and industry. In FL, participating devices iteratively update the local models based on their own data and contribute to the global training by uploading mod⁃ el updates until the training converges. Therefore, the computation capabilities of mobile de⁃ vices can be utilized and the data privacy can be preserved. However, deploying FL in re⁃ source-constrained wireless networks encounters several challenges, including the limited energy of mobile devices, weak onboard computing capability, and scarce wireless band⁃ width. To address these challenges, recent solutions have been proposed to maximize the convergence rate or minimize the energy consumption under heterogeneous constraints. In this overview, we first introduce the backgrounds and fundamentals of FL. Then, the key challenges in deploying FL in wireless networks are discussed, and several existing solu⁃ tions are reviewed. Finally, we highlight the open issues and future research directions in FL scheduling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线网络中联邦学习的调度策略综述
由于网络边缘对海量数据分析和机器学习模型训练的需求日益增长,以及对数据隐私的日益关注,一种新的分布式训练框架——联邦学习(FL)应运而生,并引起了学术界和工业界的广泛关注。在FL中,参与的设备根据自己的数据迭代更新局部模型,并通过上传模型更新为全局训练做出贡献,直到训练收敛。这样既可以利用移动设备的计算能力,又可以保护数据的隐私性。然而,在资源受限的无线网络中部署FL面临着一些挑战,包括移动设备的能量有限、板载计算能力弱以及无线带宽稀缺。为了应对这些挑战,最近提出了在异构约束下最大化收敛速度或最小化能耗的解决方案。在本综述中,我们首先介绍了FL的背景和基本原理,然后讨论了在无线网络中部署FL的主要挑战,并回顾了几种现有的解决方案。最后,对FL调度中存在的问题和未来的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1320
期刊最新文献
Artificial Intelligence Rehabilitation Evaluation and Training System for Degeneration of Joint Disease A Survey of Intelligent Sensing Technologies in Autonomous Driving Using UAV to Detect Truth for Clean Data Collection in Sensor‑Cloud Systems Semiconductor Optical Amplifier and Gain Chip Used in Wavelength Tunable Lasers Feedback‑Aware Anomaly Detection Through Logs for Large‑Scale Software Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1