Youwei Xu, G. Yan, David J. Williams, M. Serati, A. Scheuermann, Timothy Vangsness
{"title":"Experimental and numerical studies of a strip footing on geosynthetic-reinforced sand","authors":"Youwei Xu, G. Yan, David J. Williams, M. Serati, A. Scheuermann, Timothy Vangsness","doi":"10.1680/JPHMG.18.00021","DOIUrl":null,"url":null,"abstract":"The behaviour of footings on geosynthetic-reinforced soils has been investigated by many researchers through experimental and numerical modelling under stress-controlled or strain-controlled conditions. It is believed that stress-controlled tests better represent the field conditions because the load applied to the footing increases as the super structure is being built. Therefore, a new experimental set-up was designed under a stress-controlled condition, with the application of particle image velocimetry (PIV) technique. A series of model footing tests were carried out using this equipment to investigate the behaviour of the geosynthetic-reinforced soil below a strip footing. The deformation inside the soil mass below the strip footing was determined using the PIV technique. The reinforcing performances of the single-layer and multi-layer geotextile and geogrid embedded at different depths were compared and discussed by analysing the load-settlement curves. The optimum embedment depth for the single-layer geosynthetic reinforcement is in the vicinity of 0.4B. It is found that there is a stepwise increase phenomenon in settlement under the stress-controlled condition. The ultimate bearing capacities were determined from the obtained stepwise load-settlement curves using three approaches, including the tangent intersection method, the tail linear method and the allowable settlement method. The three approaches were coded in a Python program in order to easily determine and compare the results. In addition, the experimental model footing tests were simulated using the finite element method (FEM) under the same stress-condition condition with good agreement for a settlement range within 0.1B.","PeriodicalId":48816,"journal":{"name":"International Journal of Physical Modelling in Geotechnics","volume":"20 1","pages":"267-280"},"PeriodicalIF":1.2000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1680/JPHMG.18.00021","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Modelling in Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/JPHMG.18.00021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 8
Abstract
The behaviour of footings on geosynthetic-reinforced soils has been investigated by many researchers through experimental and numerical modelling under stress-controlled or strain-controlled conditions. It is believed that stress-controlled tests better represent the field conditions because the load applied to the footing increases as the super structure is being built. Therefore, a new experimental set-up was designed under a stress-controlled condition, with the application of particle image velocimetry (PIV) technique. A series of model footing tests were carried out using this equipment to investigate the behaviour of the geosynthetic-reinforced soil below a strip footing. The deformation inside the soil mass below the strip footing was determined using the PIV technique. The reinforcing performances of the single-layer and multi-layer geotextile and geogrid embedded at different depths were compared and discussed by analysing the load-settlement curves. The optimum embedment depth for the single-layer geosynthetic reinforcement is in the vicinity of 0.4B. It is found that there is a stepwise increase phenomenon in settlement under the stress-controlled condition. The ultimate bearing capacities were determined from the obtained stepwise load-settlement curves using three approaches, including the tangent intersection method, the tail linear method and the allowable settlement method. The three approaches were coded in a Python program in order to easily determine and compare the results. In addition, the experimental model footing tests were simulated using the finite element method (FEM) under the same stress-condition condition with good agreement for a settlement range within 0.1B.
期刊介绍:
International Journal of Physical Modelling in Geotechnics contains the latest research and analysis in all areas of physical modelling at any scale, including modelling at single gravity and at multiple gravities on a centrifuge, shaking table and pressure chamber testing and geoenvironmental experiments.