Shumo Wang , Xiaoqin Song , Han Xu , Tiecheng Song , Guowei Zhang , Yang Yang
{"title":"Joint offloading decision and resource allocation in vehicular edge computing networks","authors":"Shumo Wang , Xiaoqin Song , Han Xu , Tiecheng Song , Guowei Zhang , Yang Yang","doi":"10.1016/j.dcan.2023.03.006","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of Intelligent Transportation Systems (ITS), many new applications for Intelligent Connected Vehicles (ICVs) have sprung up. In order to tackle the conflict between delay-sensitive applications and resource-constrained vehicles, computation offloading paradigm that transfers computation tasks from ICVs to edge computing nodes has received extensive attention. However, the dynamic network conditions caused by the mobility of vehicles and the unbalanced computing load of edge nodes make ITS face challenges. In this paper, we propose a heterogeneous Vehicular Edge Computing (VEC) architecture with Task Vehicles (TaVs), Service Vehicles (SeVs) and Roadside Units (RSUs), and propose a distributed algorithm, namely PG-MRL, which jointly optimizes offloading decision and resource allocation. In the first stage, the offloading decisions of TaVs are obtained through a potential game. In the second stage, a multi-agent Deep Deterministic Policy Gradient (DDPG), one of deep reinforcement learning algorithms, with centralized training and distributed execution is proposed to optimize the real-time transmission power and subchannel selection. The simulation results show that the proposed PG-MRL algorithm has significant improvements over baseline algorithms in terms of system delay.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 1","pages":"Pages 71-82"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823000603","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of Intelligent Transportation Systems (ITS), many new applications for Intelligent Connected Vehicles (ICVs) have sprung up. In order to tackle the conflict between delay-sensitive applications and resource-constrained vehicles, computation offloading paradigm that transfers computation tasks from ICVs to edge computing nodes has received extensive attention. However, the dynamic network conditions caused by the mobility of vehicles and the unbalanced computing load of edge nodes make ITS face challenges. In this paper, we propose a heterogeneous Vehicular Edge Computing (VEC) architecture with Task Vehicles (TaVs), Service Vehicles (SeVs) and Roadside Units (RSUs), and propose a distributed algorithm, namely PG-MRL, which jointly optimizes offloading decision and resource allocation. In the first stage, the offloading decisions of TaVs are obtained through a potential game. In the second stage, a multi-agent Deep Deterministic Policy Gradient (DDPG), one of deep reinforcement learning algorithms, with centralized training and distributed execution is proposed to optimize the real-time transmission power and subchannel selection. The simulation results show that the proposed PG-MRL algorithm has significant improvements over baseline algorithms in terms of system delay.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.