A large-scale remote sensing scene dataset construction for semantic segmentation

LeiLei Xu, Shanqiu Shi, Yujun Liu, Hao Zhang, Dan Wang, Lu Zhang, Wan Liang, Hao Chen
{"title":"A large-scale remote sensing scene dataset construction for semantic segmentation","authors":"LeiLei Xu, Shanqiu Shi, Yujun Liu, Hao Zhang, Dan Wang, Lu Zhang, Wan Liang, Hao Chen","doi":"10.1080/19479832.2023.2199005","DOIUrl":null,"url":null,"abstract":"ABSTRACT As fuelled by the advancement of deep learning for computer vision tasks, its application in other fields has been boosted. This technology has been increasingly applied to the interpretation of remote sensing image, showing high potential economic and societal significance, such as automatically mapping land cover. However, the model requires a considerable number of samples for training, and it is now adversely affected by the lack of a large-scale dataset. Moreover, labelling samples is a time-consuming and laborious task, and a complete land classification system suitable for deep learning has not been established. This limitation hinders the development and application of deep learning. To meet the data needs of deep learning in the field of remote sensing, this study develops JSsampleP, a large-scale dataset for segmentation, generating 110,170 data samples that cover various categories of scenes within Jiangsu Province, China. The existing Geographical Condition Dataset (GCD) and Basic Surveying and Mapping Dataset (BSMD) in Jiangsu were fully utilised, significantly reducing the cost of labelling samples. Furthermore, the samples were subject to a rigorous cleaning process to ensure data quality. Finally, the accuracy of the dataset is verified using the U-Net model, and the future version will be optimised continuously.","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":"14 1","pages":"299 - 323"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2023.2199005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT As fuelled by the advancement of deep learning for computer vision tasks, its application in other fields has been boosted. This technology has been increasingly applied to the interpretation of remote sensing image, showing high potential economic and societal significance, such as automatically mapping land cover. However, the model requires a considerable number of samples for training, and it is now adversely affected by the lack of a large-scale dataset. Moreover, labelling samples is a time-consuming and laborious task, and a complete land classification system suitable for deep learning has not been established. This limitation hinders the development and application of deep learning. To meet the data needs of deep learning in the field of remote sensing, this study develops JSsampleP, a large-scale dataset for segmentation, generating 110,170 data samples that cover various categories of scenes within Jiangsu Province, China. The existing Geographical Condition Dataset (GCD) and Basic Surveying and Mapping Dataset (BSMD) in Jiangsu were fully utilised, significantly reducing the cost of labelling samples. Furthermore, the samples were subject to a rigorous cleaning process to ensure data quality. Finally, the accuracy of the dataset is verified using the U-Net model, and the future version will be optimised continuously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于语义分割的大规模遥感场景数据集构建
摘要随着计算机视觉任务深度学习的发展,它在其他领域的应用也得到了推动。这项技术越来越多地应用于遥感图像的解释,显示出很高的潜在经济和社会意义,例如自动绘制土地覆盖图。然而,该模型需要大量的样本进行训练,而且由于缺乏大规模数据集,它现在受到了不利影响。此外,标记样本是一项耗时费力的任务,而且还没有建立一个适合深度学习的完整土地分类系统。这种局限性阻碍了深度学习的发展和应用。为了满足遥感领域深度学习的数据需求,本研究开发了用于分割的大型数据集JSsampleP,生成了110170个数据样本,覆盖了中国江苏省的各类场景。充分利用了江苏现有的地理条件数据集(GCD)和基础测绘数据集(BSMD),显著降低了样本标签成本。此外,为了确保数据质量,对样本进行了严格的清洁处理。最后,使用U-Net模型验证了数据集的准确性,未来的版本将不断优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
10
期刊介绍: International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).
期刊最新文献
CNN-based plant disease recognition using colour space models Building classification extraction from remote sensing images combining hyperpixel and maximum interclass variance PolSAR image classification based on TCN deep learning: a case study of greater Cairo Spatial enhancement of Landsat-9 land surface temperature imagery by Fourier transformation-based panchromatic fusion Underwater image contrast enhancement through an intensity-randomised approach incorporating a swarm intelligence technique with unsupervised dual-step fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1