{"title":"Polyurethane coated with polyvinylpyrrolidones via triazole links for enhanced surface fouling resistance","authors":"Xin Wen, Rashed Almousa, Sungsoo Na, Gregory G. Anderson, Dong Xie","doi":"10.1049/bsb2.12023","DOIUrl":null,"url":null,"abstract":"<p>Surfaces with hydrophilic and antimicrobial properties are very attractive for cardiovascular device-associated applications. The aim of this study was to prepare and coat a hydrophilic polymer containing a functional group capable of forming triazole functionality onto the surface of polyurethane (PU). The modified surfaces were assessed with cell adhesion, bacterial adhesion and bacterial viability. Mouse fibroblast cells (NIH-3T3) and three bacterial species were used for assessment. The results showed that the modified surface not only exhibited a significant reduction in cell adhesion with a 25%–59% decrease to mouse fibroblast but also showed a significant reduction in bacterial attachment with 26%–67%, 24%–61% and 23%–57% decrease to <i>Staphylococcus aureus</i>, <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i>, respectively, as compared with original PU. Furthermore, the polymer-modified surface exhibited a significant antibacterial function by inhibiting bacterial growth with reduction of 49%–84%, 44%–79% and 53%–79% to <i>S</i>. <i>aureus</i>, <i>E</i>. <i>coli</i> and <i>P</i>. <i>aeruginosa</i>, respectively, as compared with original PU. These results indicate that covalent polymer attachment enhanced the antibacterial and antifouling properties of the PU surface.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"7 4","pages":"219-227"},"PeriodicalIF":1.6000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12023","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Surfaces with hydrophilic and antimicrobial properties are very attractive for cardiovascular device-associated applications. The aim of this study was to prepare and coat a hydrophilic polymer containing a functional group capable of forming triazole functionality onto the surface of polyurethane (PU). The modified surfaces were assessed with cell adhesion, bacterial adhesion and bacterial viability. Mouse fibroblast cells (NIH-3T3) and three bacterial species were used for assessment. The results showed that the modified surface not only exhibited a significant reduction in cell adhesion with a 25%–59% decrease to mouse fibroblast but also showed a significant reduction in bacterial attachment with 26%–67%, 24%–61% and 23%–57% decrease to Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively, as compared with original PU. Furthermore, the polymer-modified surface exhibited a significant antibacterial function by inhibiting bacterial growth with reduction of 49%–84%, 44%–79% and 53%–79% to S. aureus, E. coli and P. aeruginosa, respectively, as compared with original PU. These results indicate that covalent polymer attachment enhanced the antibacterial and antifouling properties of the PU surface.