{"title":"Application of optical character recognition with Tesseract in logistics management","authors":"Sigurd Berg, S. Seo, R.H.Y. So","doi":"10.1504/IJIMS.2019.10022461","DOIUrl":null,"url":null,"abstract":"Warehouse and inventory management poses many challenges, for example in carton handling when upstream suppliers use labelling systems that are incompatible with a company's downstream system. In such cases, information is digitised using manual labour: this process can often become a bottleneck and, eventually, a source of handling errors. In this paper, the feasibility of applying optical character recognition (OCR) technology in carton handling is assessed, and a prototype based on the open-source engine Tesseract is described in detail. Its performance on both printed and handwritten text is quantified, as well as the impact of turning the problem into a matching problem rather than a pure recognition problem.","PeriodicalId":39293,"journal":{"name":"International Journal of Internet Manufacturing and Services","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Internet Manufacturing and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIMS.2019.10022461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Warehouse and inventory management poses many challenges, for example in carton handling when upstream suppliers use labelling systems that are incompatible with a company's downstream system. In such cases, information is digitised using manual labour: this process can often become a bottleneck and, eventually, a source of handling errors. In this paper, the feasibility of applying optical character recognition (OCR) technology in carton handling is assessed, and a prototype based on the open-source engine Tesseract is described in detail. Its performance on both printed and handwritten text is quantified, as well as the impact of turning the problem into a matching problem rather than a pure recognition problem.