Numerical Simulation and Test Study on Track Welding of QTT

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Advances in Astronomy Pub Date : 2023-03-23 DOI:10.1155/2023/5525558
Duoxiang Xu, Qian Xu, Lin Li, Hui Wang, Na Wang
{"title":"Numerical Simulation and Test Study on Track Welding of QTT","authors":"Duoxiang Xu, Qian Xu, Lin Li, Hui Wang, Na Wang","doi":"10.1155/2023/5525558","DOIUrl":null,"url":null,"abstract":"Considering the stringent requirement of the pointing accuracy up to 2.5″ of the world’s largest full steerable radio telescope, this paper studies the welding experiment of the azimuth track of the antenna. First, the opposite deformation jig and welding process were designed for the QTT’s azimuth track. Then, the welding process was numerically simulated using a finite element model. The simulation results show that a better welding effect will be obtained by appropriately reducing the opposite force on the basis of the original. The three deformation processes of the track are regulated by the opposite deformation jig. The results show that the opposite deformation jig designed for QTT’s azimuth track can make the amount of deformation and flatness meet the design requirements. Finally, nondestructive testing was carried out to check the welding quality of the track surface and interior. The results show that there are no obvious defects in the welds of the azimuth track. The constraint jig and welding processes designed for QTT are effective and feasible.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/5525558","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the stringent requirement of the pointing accuracy up to 2.5″ of the world’s largest full steerable radio telescope, this paper studies the welding experiment of the azimuth track of the antenna. First, the opposite deformation jig and welding process were designed for the QTT’s azimuth track. Then, the welding process was numerically simulated using a finite element model. The simulation results show that a better welding effect will be obtained by appropriately reducing the opposite force on the basis of the original. The three deformation processes of the track are regulated by the opposite deformation jig. The results show that the opposite deformation jig designed for QTT’s azimuth track can make the amount of deformation and flatness meet the design requirements. Finally, nondestructive testing was carried out to check the welding quality of the track surface and interior. The results show that there are no obvious defects in the welds of the azimuth track. The constraint jig and welding processes designed for QTT are effective and feasible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QTT轨道焊接数值模拟与试验研究
考虑到世界上最大的全转向射电望远镜对指向精度高达2.5〃的苛刻要求,本文研究了天线方位轨迹的焊接实验。首先,针对QTT的方位轨迹,设计了反变形夹具和焊接工艺。然后,使用有限元模型对焊接过程进行了数值模拟。仿真结果表明,在原来的基础上适当减小反作用力,可以获得更好的焊接效果。轨道的三个变形过程由相对的变形夹具调节。结果表明,为QTT的方位轨迹设计的反变形夹具可以使变形量和平面度满足设计要求。最后,对轨道表面和轨道内部的焊接质量进行了无损检测。结果表明,方位轨迹焊缝无明显缺陷。为QTT设计的约束夹具和焊接工艺是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
期刊最新文献
A Study of the Early Cosmic Dynamics in a Multifield Model of Inflation and Curvature Perturbations Forecasting Ionospheric TEC Changes Associated with the December 2019 and June 2020 Solar Eclipses: A Comparative Analysis of OKSM, FFNN, and DeepAR Models Measuring Track-Related Pointing Errors on the Nanshan Radio Telescope with an Optical Pointing Telescope Tracking and Disturbance Suppression of the Radio Telescope Servo System Based on the Equivalent-Input-Disturbance Approach Dark Energy from Cosmological Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1