Relapse Risk Prediction for Children with Henoch-Schönlein Purpura Based on GA-SVM

Q4 Agricultural and Biological Sciences International Journal Bioautomation Pub Date : 2020-06-01 DOI:10.7546/ijba.2020.24.2.000608
Yijun Liu, Beihong Wang, Ren-pu Li, Sheng He, Haixu Xi, Ye Luo
{"title":"Relapse Risk Prediction for Children with Henoch-Schönlein Purpura Based on GA-SVM","authors":"Yijun Liu, Beihong Wang, Ren-pu Li, Sheng He, Haixu Xi, Ye Luo","doi":"10.7546/ijba.2020.24.2.000608","DOIUrl":null,"url":null,"abstract":"The relapse risk prediction for children with Henoch-Schönlein purpura can help pediatricians make an accurate prognosis and offer personalized and appropriate follow-up nursing and relapse control to patients. In this study, we propose a Genetic algorithmSupport vector machine (GA-SVM) learning method combining the support vector machine with the genetic algorithm for parameter optimization to capture the nonlinear mapping from a panel of biomarkers to the relapse risk of HSP children. The GA-SVM prediction model is created by using the dataset of 40 samples in clinical treatment and observation of patients. The inputs of the model consist of 19 biomarkers including gender, age, immunoglobulin M, immunoglobulin G, immunoglobulin A, prothrombin time, etc. The outputs consist of 1 and -1, where 1 indicates high relapse risk and -1 indicates low relapse risk. For comparison, the GS-SVM prediction model based on parameter optimization of grid search is also created. The experimental results show that the GA-SVM prediction model has a high prediction accuracy of 90% and is strong in generalization ability. The GA-SVM model for predicting the relapse risk of HSP children is a promising decision support tool of clinical prognosis, which provides pediatricians with valuable assistance to offer rehabilitation treatment to patients.","PeriodicalId":38867,"journal":{"name":"International Journal Bioautomation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Bioautomation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/ijba.2020.24.2.000608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The relapse risk prediction for children with Henoch-Schönlein purpura can help pediatricians make an accurate prognosis and offer personalized and appropriate follow-up nursing and relapse control to patients. In this study, we propose a Genetic algorithmSupport vector machine (GA-SVM) learning method combining the support vector machine with the genetic algorithm for parameter optimization to capture the nonlinear mapping from a panel of biomarkers to the relapse risk of HSP children. The GA-SVM prediction model is created by using the dataset of 40 samples in clinical treatment and observation of patients. The inputs of the model consist of 19 biomarkers including gender, age, immunoglobulin M, immunoglobulin G, immunoglobulin A, prothrombin time, etc. The outputs consist of 1 and -1, where 1 indicates high relapse risk and -1 indicates low relapse risk. For comparison, the GS-SVM prediction model based on parameter optimization of grid search is also created. The experimental results show that the GA-SVM prediction model has a high prediction accuracy of 90% and is strong in generalization ability. The GA-SVM model for predicting the relapse risk of HSP children is a promising decision support tool of clinical prognosis, which provides pediatricians with valuable assistance to offer rehabilitation treatment to patients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GA-SVM的儿童Henoch-Schönlein紫癜复发风险预测
对儿童过敏性紫癜复发风险的预测可以帮助儿科医生做出准确的预后,并为患者提供个性化和适当的随访护理和复发控制。在本研究中,我们提出了一种遗传算法支持向量机(GA-SVM)学习方法,将支持向量机与遗传算法相结合进行参数优化,以捕捉从一组生物标志物到HSP儿童复发风险的非线性映射。GA-SVM预测模型是通过使用患者临床治疗和观察中的40个样本的数据集创建的。该模型的输入由19个生物标志物组成,包括性别、年龄、免疫球蛋白M、免疫球蛋白质G、免疫球素A、凝血酶原时间等。输出由1和-1组成,其中1表示高复发风险,-1表示低复发风险。为了进行比较,还建立了基于网格搜索参数优化的GS-SVM预测模型。实验结果表明,GA-SVM预测模型的预测精度高达90%,具有较强的泛化能力。用于预测HSP儿童复发风险的GA-SVM模型是一种很有前途的临床预后决策支持工具,为儿科医生为患者提供康复治疗提供了宝贵的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal Bioautomation
International Journal Bioautomation Agricultural and Biological Sciences-Food Science
CiteScore
1.10
自引率
0.00%
发文量
22
审稿时长
12 weeks
期刊最新文献
Differential Effect of Novel Plant Cystatins on the Adhesive Behaviour of Normal and Cancer Breast Cells Genome Wide Identification, Characterization and Evolutionary Analysis of T6SS in Burkholderia cenocepacia Strains Dynamic Model Inference of Gene Regulatory Network based on Hybrid Parallel Genetic Algorithm and Threshold Qualification Method Effect of Graphene Oxide and Ammonia-modified Graphene Oxide Particles on ATPase Activity of Rat Liver Mitochondria The Ecological Role of Probiotics in in vitro Culture for the Improvement of Health in the Poultry Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1