Toward Understanding the Mechanism of Wine Oxidation

IF 2.2 3区 农林科学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY American Journal of Enology and Viticulture Pub Date : 2021-06-08 DOI:10.5344/ajev.2021.21008
J. Danilewicz
{"title":"Toward Understanding the Mechanism of Wine Oxidation","authors":"J. Danilewicz","doi":"10.5344/ajev.2021.21008","DOIUrl":null,"url":null,"abstract":"The electronic configuration of oxygen (O2) does not allow it to react directly with wine reductants such as polyphenols. It relies on the catalytic intervention of iron (Fe), which redox cycles between its ferrous (Fe(II)) and ferric (Fe(III)) states. O2 oxidizes Fe(II) to Fe(III), and Fe(III) then oxidizes polyphenols. Low concentrations of copper accelerate oxidation, and nucleophiles, especially sulfite, promote polyphenol oxidation. In wine that is protected from air, Fe exists mainly as Fe(II), but the Fe(III):Fe(II) concentration ratio increases immediately on air exposure, stabilizing at varying speeds and values. The oxidation of Fe(II) in air-saturated model wine and the reduction of Fe(III) by a catechol under nitrogen in model wine were examined separately to better understand the oxidative process. The Fe(III) produced when Fe(II) reacted with O2 slows the reaction. As in wine, it was important to include sulfite to remove the intermediate hydrogen peroxide, which also oxidizes Fe(II). The reaction was pseudosecond-order in Fe(II), indicating that the transfer of both electrons to O2 is rate determining. Similarly, when Fe(III) was reduced by the catechol, the Fe(II) produced inhibited the reaction, which overall followed a pseudosecond-order rate law in Fe(III). The rate of Fe(II) oxidation was slower than the rate of Fe(III) reduction, but when the reactions occurred together, as in wine oxidation, Fe(III) and Fe(II) concentrations equilibrated such that their rates equalized. Under the conditions studied, this occurred at 32% Fe(III). This equilibrium was attained quickly, as is the case in red wine. These findings on the oxidative process should help explain the relationships between wine composition, redox state, and Fe(III):Fe(II) concentration ratios.","PeriodicalId":7461,"journal":{"name":"American Journal of Enology and Viticulture","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Enology and Viticulture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5344/ajev.2021.21008","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

The electronic configuration of oxygen (O2) does not allow it to react directly with wine reductants such as polyphenols. It relies on the catalytic intervention of iron (Fe), which redox cycles between its ferrous (Fe(II)) and ferric (Fe(III)) states. O2 oxidizes Fe(II) to Fe(III), and Fe(III) then oxidizes polyphenols. Low concentrations of copper accelerate oxidation, and nucleophiles, especially sulfite, promote polyphenol oxidation. In wine that is protected from air, Fe exists mainly as Fe(II), but the Fe(III):Fe(II) concentration ratio increases immediately on air exposure, stabilizing at varying speeds and values. The oxidation of Fe(II) in air-saturated model wine and the reduction of Fe(III) by a catechol under nitrogen in model wine were examined separately to better understand the oxidative process. The Fe(III) produced when Fe(II) reacted with O2 slows the reaction. As in wine, it was important to include sulfite to remove the intermediate hydrogen peroxide, which also oxidizes Fe(II). The reaction was pseudosecond-order in Fe(II), indicating that the transfer of both electrons to O2 is rate determining. Similarly, when Fe(III) was reduced by the catechol, the Fe(II) produced inhibited the reaction, which overall followed a pseudosecond-order rate law in Fe(III). The rate of Fe(II) oxidation was slower than the rate of Fe(III) reduction, but when the reactions occurred together, as in wine oxidation, Fe(III) and Fe(II) concentrations equilibrated such that their rates equalized. Under the conditions studied, this occurred at 32% Fe(III). This equilibrium was attained quickly, as is the case in red wine. These findings on the oxidative process should help explain the relationships between wine composition, redox state, and Fe(III):Fe(II) concentration ratios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对葡萄酒氧化机理的认识
氧(O2)的电子构型不允许它与多酚等葡萄酒还原剂直接反应。它依赖于铁(Fe)的催化干预,铁(Fe)在其亚铁(Fe(II))和铁(Fe(III))状态之间进行氧化还原循环。O2将Fe(II)氧化为Fe(III),然后Fe(III)氧化多酚。低浓度的铜加速氧化,亲核试剂,特别是亚硫酸盐,促进多酚氧化。在不受空气影响的葡萄酒中,铁主要以铁(II)的形式存在,但铁(III):铁(II)的浓度比在空气暴露后立即增加,并以不同的速度和值稳定下来。为了更好地了解氧化过程,我们分别考察了空气饱和模型酒中铁(II)的氧化和儿茶酚在氮气作用下对铁(III)的还原。当Fe(II)与O2反应时产生的Fe(III)减慢了反应速度。就像在葡萄酒中一样,加入亚硫酸盐来去除中间的过氧化氢是很重要的,过氧化氢也会氧化铁(II)。该反应在Fe(II)中为准二级反应,表明两个电子向O2的转移是速率决定的。同样,当Fe(III)被儿茶酚还原时,产生的Fe(II)抑制了反应,总体上遵循Fe(III)的准二级速率定律。铁(II)的氧化速度比铁(III)的还原速度慢,但当反应同时发生时,如在葡萄酒氧化中,铁(III)和铁(II)的浓度平衡,使它们的速率相等。在研究的条件下,这种情况发生在32% Fe(III)。这种平衡很快就达到了,就像红酒一样。这些关于氧化过程的发现有助于解释葡萄酒成分、氧化还原状态和铁(III):铁(II)浓度比之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Enology and Viticulture
American Journal of Enology and Viticulture 农林科学-生物工程与应用微生物
CiteScore
3.80
自引率
10.50%
发文量
27
审稿时长
12-24 weeks
期刊介绍: The American Journal of Enology and Viticulture (AJEV), published quarterly, is an official journal of the American Society for Enology and Viticulture (ASEV) and is the premier journal in the English language dedicated to scientific research on winemaking and grapegrowing. AJEV publishes full-length research papers, literature reviews, research notes, and technical briefs on various aspects of enology and viticulture, including wine chemistry, sensory science, process engineering, wine quality assessments, microbiology, methods development, plant pathogenesis, diseases and pests of grape, rootstock and clonal evaluation, effect of field practices, and grape genetics and breeding. All papers are peer reviewed, and authorship of papers is not limited to members of ASEV. The science editor, along with the viticulture, enology, and associate editors, are drawn from academic and research institutions worldwide and guide the content of the Journal.
期刊最新文献
Red Wine Fermentation Alters Grape Seed Morphology and Internal Porosity Phenological Stage and Tissue Type of Grapevines Impact Concentrations and Variability of Mineral Nutrients Machine-Learning Methods for the Identification of Key Predictors of Site-Specific Vineyard Yield and Vine Size Gibberellic Acid for Table Grape Inflorescence Elongation: Is It Worth It? Consumer Hedonic Testing and Chemical Analysis of Iowa Wines Made from Five Cold-Hardy Interspecific Grape Varieties (Vitisspp.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1