Secured authentication of radio-frequency identification system using PRESENT block cipher

Bharathi Ramachandra, Smitha Elsa Peter
{"title":"Secured authentication of radio-frequency identification system using PRESENT block cipher","authors":"Bharathi Ramachandra, Smitha Elsa Peter","doi":"10.11591/ijece.v13i5.pp5462-5471","DOIUrl":null,"url":null,"abstract":"The internet of things (IoT) is an emerging and robust technology to interconnect billions of objects or devices via the internet to communicate smartly. The radio frequency identification (RFID) system plays a significant role in IoT systems, providing most features like mutual establishment, key establishment, and data confidentiality. This manuscript designed secure authentication of IoT-based RFID systems using the light-weight PRESENT algorithm on the hardware platform. The PRESENT-256 block cipher is considered in this work, and it supports 64-bit data with a 256-key length. The PRESENT-80/128 cipher is also designed along with PRESENT-256 at electronic codebook (ECB) mode for Secured mutual authentication between RFID tag and reader for IoT applications. The secured authentication is established in two stages: Tag recognition from reader, mutual authentication between tag and reader using PRESENT-80/128/256 cipher modules. The complete secured authentication of IoT-based RFID system simulation results is verified using the chip-scope tool with field-programmable gate array (FPGA) results. The comparative results for PRESENT block cipher with existing PRESENT ciphers and other light-weight algorithms are analyzed with resource improvements. The proposed secured authentication work is compared with similar RFID-mutual authentication (MA) approaches with better chip area and frequency improvements.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5462-5471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

The internet of things (IoT) is an emerging and robust technology to interconnect billions of objects or devices via the internet to communicate smartly. The radio frequency identification (RFID) system plays a significant role in IoT systems, providing most features like mutual establishment, key establishment, and data confidentiality. This manuscript designed secure authentication of IoT-based RFID systems using the light-weight PRESENT algorithm on the hardware platform. The PRESENT-256 block cipher is considered in this work, and it supports 64-bit data with a 256-key length. The PRESENT-80/128 cipher is also designed along with PRESENT-256 at electronic codebook (ECB) mode for Secured mutual authentication between RFID tag and reader for IoT applications. The secured authentication is established in two stages: Tag recognition from reader, mutual authentication between tag and reader using PRESENT-80/128/256 cipher modules. The complete secured authentication of IoT-based RFID system simulation results is verified using the chip-scope tool with field-programmable gate array (FPGA) results. The comparative results for PRESENT block cipher with existing PRESENT ciphers and other light-weight algorithms are analyzed with resource improvements. The proposed secured authentication work is compared with similar RFID-mutual authentication (MA) approaches with better chip area and frequency improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PRESENT分组密码的射频识别系统安全认证
物联网(IoT)是一种新兴且强大的技术,通过互联网将数十亿个物体或设备互连,以进行智能通信。射频识别(RFID)系统在物联网系统中发挥着重要作用,提供了相互建立、密钥建立和数据保密等大部分功能。本文在硬件平台上使用轻量级的PRESENT算法设计了基于物联网的RFID系统的安全认证。本工作考虑了PRESENT-256分组密码,它支持256密钥长度的64位数据。在电子码本(ECB)模式下,PRESENT-80/128密码也与PRESENT-256一起设计,用于物联网应用的RFID标签和读取器之间的安全相互认证。安全认证分为两个阶段:来自读取器的标签识别,标签和读取器之间使用PRESENT-80/128/256密码模块的相互认证。使用芯片示波器工具和现场可编程门阵列(FPGA)结果验证了基于物联网的RFID系统仿真结果的完整安全认证。分析了PRESENT分组密码与现有PRESENT密码和其他轻量级算法的比较结果,并对资源进行了改进。将所提出的安全认证工作与具有更好芯片面积和频率改进的类似RFID相互认证(MA)方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
期刊最新文献
Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem Explainable extreme boosting model for breast cancer diagnosis Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition A thermally aware performance analysis of quantum cellular automata logic gates Technical and market evaluation of thermal generation power plants in the Colombia power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1