Extreme Value Theory Applied to r Largest Order Statistics Under the Bayesian Approach

Renato S Silva, F. Nascimento
{"title":"Extreme Value Theory Applied to r Largest Order Statistics Under the Bayesian Approach","authors":"Renato S Silva, F. Nascimento","doi":"10.15446/RCE.V42N2.70271","DOIUrl":null,"url":null,"abstract":"Extreme Value Theory (EVT) is an important tool to predict efficient gains and losses. Its main areas of analyses are economic and environmental. Initially, for that form of event, it was developed the use of patterns of parametric distribution such as Normal and Gamma. However, economic and environmental data presents, in most cases, a heavy-tailed distribution, in contrast to those distributions. Thus, it was faced a great difficult to frame extreme events. Furthermore, it was almost impossible to use conventional models, making predictions about non-observed events, which exceed the maximum of observations. In some situations EVT is used to analyse only the maximum of some dataset, which provide few observations, and in those cases it is more effective to use the r largest-order statistics. This paper aims to propose Bayesian estimators' for parameters of the r largest-order statistics. During the research, it was used Monte Carlo simulation to analyze the data, and it was observed some properties of those estimators, such as mean, variance, bias and Root Mean Square Error (RMSE). The estimation of the parameters provided inference for its parameters and return levels. This paper also shows a procedure to the choice of the r-optimal to the r largest-order statistics, based on the Bayesian approach applying Markov chains Monte Carlo (MCMC). Simulation results reveal that the Bayesian approach has a similar performance to the Maximum Likelihood Estimation, and the applications were developed using the Bayesian approach and showed a gain in accurary compared with otherestimators.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15446/RCE.V42N2.70271","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RCE.V42N2.70271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

Extreme Value Theory (EVT) is an important tool to predict efficient gains and losses. Its main areas of analyses are economic and environmental. Initially, for that form of event, it was developed the use of patterns of parametric distribution such as Normal and Gamma. However, economic and environmental data presents, in most cases, a heavy-tailed distribution, in contrast to those distributions. Thus, it was faced a great difficult to frame extreme events. Furthermore, it was almost impossible to use conventional models, making predictions about non-observed events, which exceed the maximum of observations. In some situations EVT is used to analyse only the maximum of some dataset, which provide few observations, and in those cases it is more effective to use the r largest-order statistics. This paper aims to propose Bayesian estimators' for parameters of the r largest-order statistics. During the research, it was used Monte Carlo simulation to analyze the data, and it was observed some properties of those estimators, such as mean, variance, bias and Root Mean Square Error (RMSE). The estimation of the parameters provided inference for its parameters and return levels. This paper also shows a procedure to the choice of the r-optimal to the r largest-order statistics, based on the Bayesian approach applying Markov chains Monte Carlo (MCMC). Simulation results reveal that the Bayesian approach has a similar performance to the Maximum Likelihood Estimation, and the applications were developed using the Bayesian approach and showed a gain in accurary compared with otherestimators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极值理论在贝叶斯方法下最大阶统计量中的应用
极值理论(EVT)是预测有效收益和损失的重要工具。它的主要分析领域是经济和环境。最初,对于这种形式的事件,它使用了参数分布模式,如正态分布和伽玛分布。然而,与这些分布相反,经济和环境数据在大多数情况下呈现出一种重尾分布。因此,它面临着极大的困难,以框架极端事件。此外,几乎不可能使用传统模型对超出观测最大值的未观测事件进行预测。在某些情况下,EVT只用于分析一些数据集的最大值,这些数据集提供的观测值很少,在这些情况下,使用r最大阶统计量更有效。本文旨在提出r个最大阶统计量参数的贝叶斯估计。在研究过程中,采用蒙特卡罗模拟方法对数据进行分析,观察了这些估计量的均值、方差、偏倚和均方根误差(RMSE)等特性。参数的估计为其参数和回归水平提供了推断。本文还给出了一个基于贝叶斯方法的、应用马尔可夫链蒙特卡罗(MCMC)的r最大阶统计量的r最优选择过程。仿真结果表明,贝叶斯方法具有与极大似然估计相似的性能,并且利用贝叶斯方法开发了应用程序,与其他估计方法相比,贝叶斯方法的精度有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Colombiana De Estadistica
Revista Colombiana De Estadistica STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication. The Editorial Committee assumes that the works submitted for evaluation have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.
期刊最新文献
An Improved Estimator of finite Population Variance Using two Auxiliary Variable SRS Imputation of Missing Data Through Product Type Exponential Methods in Sampling Theory Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution Robust Post-Hoc Multiple Comparisons: Skew t Distributed Error Terms Nonparametric Prediction for Spatial Dependent Functional Data Under Fixed Sampling Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1