Fabrication of copper incorporated graphene oxide nanocomposites used for electrochemical determination of methyl parathion contaminants

IF 0.7 4区 材料科学 Q4 ELECTROCHEMISTRY Journal of New Materials For Electrochemical Systems Pub Date : 2022-08-31 DOI:10.14447/jnmes.v25i3.a06
V. Deepa, B. Kavitha, S. Aejitha, H. Aswathaman, Sethuramachandran Thanikaikarasan, N. Senthil kumar
{"title":"Fabrication of copper incorporated graphene oxide nanocomposites used for electrochemical determination of methyl parathion contaminants","authors":"V. Deepa, B. Kavitha, S. Aejitha, H. Aswathaman, Sethuramachandran Thanikaikarasan, N. Senthil kumar","doi":"10.14447/jnmes.v25i3.a06","DOIUrl":null,"url":null,"abstract":"lectrochemical studies of methyl parathion on novel nanocomposites electrode surface systems reached distinction in recent years because of their application in trace determination. Cyclic voltammetric behaviours of methyl parathion on nanocomposites modified glassy carbon electrodes at different pH in aqueous ethanol media were carried out. Influence of pH led to the selection of pH 1.0 as the best pH for the electroanalysis of methyl parathion. Voltamogram of pesticide exhibits two cathodic and one anodic peak responding at all pH media with the novel modified electrode system. The modified electrode shows one redox couple around the potential range from 0.1 to 0.3 V and one reduction peak around at - 0.75 V with higher peak current responding to the modified electrode. The reduction peaks were selected for stripping analysis owing to their maximum current response. The experimental parameters were optimized using the differential pulse stripping mode. A calibration plot was made. The determination limit and standard deviations were arrived. The applicability of the method was also verified in a sample soil analysis.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Materials For Electrochemical Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14447/jnmes.v25i3.a06","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

lectrochemical studies of methyl parathion on novel nanocomposites electrode surface systems reached distinction in recent years because of their application in trace determination. Cyclic voltammetric behaviours of methyl parathion on nanocomposites modified glassy carbon electrodes at different pH in aqueous ethanol media were carried out. Influence of pH led to the selection of pH 1.0 as the best pH for the electroanalysis of methyl parathion. Voltamogram of pesticide exhibits two cathodic and one anodic peak responding at all pH media with the novel modified electrode system. The modified electrode shows one redox couple around the potential range from 0.1 to 0.3 V and one reduction peak around at - 0.75 V with higher peak current responding to the modified electrode. The reduction peaks were selected for stripping analysis owing to their maximum current response. The experimental parameters were optimized using the differential pulse stripping mode. A calibration plot was made. The determination limit and standard deviations were arrived. The applicability of the method was also verified in a sample soil analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜掺杂氧化石墨烯纳米复合材料的制备及其电化学测定甲基对硫磷污染物的研究
近年来,新型纳米复合材料电极表面体系甲基对硫磷的电化学研究因其在痕量测定中的应用而引起了广泛的关注。研究了甲基对硫磷在不同pH值的纳米复合材料修饰玻碳电极上的循环伏安行为。pH的影响使甲基对硫磷的最佳电解pH选择为pH 1.0。在该电极体系下,农药的伏安图表现出两个阴极峰和一个阳极峰,在所有pH介质下均有响应。修饰电极在0.1 ~ 0.3 V电位范围内出现一个氧化还原偶,在- 0.75 V电位范围内出现一个还原峰,修饰电极的峰值电流更高。由于其最大电流响应,选择还原峰进行剥离分析。采用差分脉冲剥离模式对实验参数进行了优化。绘制了标定图。得到了测定限和标准偏差。通过对一个土样的分析,验证了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of New Materials For Electrochemical Systems
Journal of New Materials For Electrochemical Systems ELECTROCHEMISTRY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: This international Journal is intended for the publication of original work, both analytical and experimental, and of reviews and commercial aspects related to the field of New Materials for Electrochemical Systems. The emphasis will be on research both of a fundamental and an applied nature in various aspects of the development of new materials in electrochemical systems.
期刊最新文献
Effect of Ceramic Coated Tool on Stray Cut in Electrochemical Micromachining Hybrid Optimization Algorithms for Maximum Power Point Tracking based Incremental Conductance Techniques with Solar Cell Synthesis of Graphene Oxide Coating on ZnCo2S4 Using Hydrothermal Method for Electrochemical Capacitors Applications Harmonics Reduction and Balanced Transition in Hybrid Renewable Energy Sources in a Micro Grid Power System Tuning the Particle Size Distribution at Cathode for Enhanced Li-Ion Battery Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1