Sequential Minimum Risk Point Estimation of the Parameters of an Inverse Gaussian Distribution

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2020-01-02 DOI:10.1080/01966324.2019.1570883
Ajit Chaturvedi, Sudeep R. Bapat, Neeraj Joshi
{"title":"Sequential Minimum Risk Point Estimation of the Parameters of an Inverse Gaussian Distribution","authors":"Ajit Chaturvedi, Sudeep R. Bapat, Neeraj Joshi","doi":"10.1080/01966324.2019.1570883","DOIUrl":null,"url":null,"abstract":"SYNOPTIC ABSTRACT In the first part of this article, a minimum risk estimation procedure is developed for estimating the mean μ of an inverse Gaussian distribution having an unknown scale parameter λ. A weighted squared-error loss function is assumed, and we aim at controlling the associated risk function. First and second-order asymptotic properties are also established for our stopping rule. The second part deals with developing a minimum risk estimation procedure for estimating the scale parameter λ of an inverse Gaussian distribution. We make use of a squared-error loss function here. The failure of a fixed sample size procedure is established and, hence, some sequential procedures are proposed to deal with this situation. For this estimation problem, we make use of the uniformly minimum variance unbiased estimator (UMVUE) and the minimum mean square estimator (MMSE) of the associated parameters. Second-order approximations are derived for the sequential procedures and improved estimators are proposed.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"39 1","pages":"20 - 40"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2019.1570883","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2019.1570883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 6

Abstract

SYNOPTIC ABSTRACT In the first part of this article, a minimum risk estimation procedure is developed for estimating the mean μ of an inverse Gaussian distribution having an unknown scale parameter λ. A weighted squared-error loss function is assumed, and we aim at controlling the associated risk function. First and second-order asymptotic properties are also established for our stopping rule. The second part deals with developing a minimum risk estimation procedure for estimating the scale parameter λ of an inverse Gaussian distribution. We make use of a squared-error loss function here. The failure of a fixed sample size procedure is established and, hence, some sequential procedures are proposed to deal with this situation. For this estimation problem, we make use of the uniformly minimum variance unbiased estimator (UMVUE) and the minimum mean square estimator (MMSE) of the associated parameters. Second-order approximations are derived for the sequential procedures and improved estimators are proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逆高斯分布参数序贯最小风险点估计
摘要本文第一部分给出了一个最小风险估计方法,用于估计具有未知标度参数λ的反高斯分布的均值μ。假设一个加权误差平方损失函数,目的是控制相关的风险函数。并建立了停止规则的一阶和二阶渐近性质。第二部分讨论了一种用于估计反高斯分布的尺度参数λ的最小风险估计程序。我们利用了平方误差损失函数。确定了固定样本量程序的失效,因此,提出了一些顺序程序来处理这种情况。对于这个估计问题,我们利用了相关参数的一致最小方差无偏估计量(UMVUE)和最小均方估计量(MMSE)。推导了序列过程的二阶近似,并提出了改进的估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1