Conditional evaluation of predictive models: The cspa command

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Stata Journal Pub Date : 2022-12-01 DOI:10.1177/1536867X221141014
Z. Liao, R. Quaedvlieg, W. Zhou
{"title":"Conditional evaluation of predictive models: The cspa command","authors":"Z. Liao, R. Quaedvlieg, W. Zhou","doi":"10.1177/1536867X221141014","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a new command, cspa, that implements the conditional superior predictive ability test developed in Li, Liao, and Quaedvlieg (2022, Review of Economic Studies 89: 843–875). With the conditional performance of predictive methods measured nonparametrically by the conditional expectation functions of their predictive losses, we test the null hypothesis that a benchmark model weakly outperforms a collection of competitors uniformly across the conditioning space. The proposed command can implement this test for both independent cross-sectional data and serially dependent time-series data. Confidence sets for the most superior model can be obtained by inverting the test, for which the cspa command also offers a convenient implementation.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221141014","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce a new command, cspa, that implements the conditional superior predictive ability test developed in Li, Liao, and Quaedvlieg (2022, Review of Economic Studies 89: 843–875). With the conditional performance of predictive methods measured nonparametrically by the conditional expectation functions of their predictive losses, we test the null hypothesis that a benchmark model weakly outperforms a collection of competitors uniformly across the conditioning space. The proposed command can implement this test for both independent cross-sectional data and serially dependent time-series data. Confidence sets for the most superior model can be obtained by inverting the test, for which the cspa command also offers a convenient implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测模型的条件求值:cspa命令
在本文中,我们介绍了一种新的命令cspa,它实现了李、廖和Quaedvlieg(2022,经济研究综述89:843–875)开发的条件优越预测能力测试。利用预测方法的条件性能,通过其预测损失的条件期望函数进行非框架测量,我们检验了零假设,即基准模型在条件空间上均匀地弱于竞争对手的集合。所提出的命令可以对独立的横截面数据和序列相关的时间序列数据执行此测试。最高级模型的置信集可以通过反转测试来获得,cspa命令也为其提供了方便的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
期刊最新文献
posw: A command for the stepwise Neyman-orthogonal estimator A Lagrange multiplier test for the mean stationarity assumption in dynamic panel-data models Visualizing uncertainty in a two-dimensional estimate using confidence and comparison regions Color palettes for Stata graphics: An update Pseudo-observations in a multistate setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1