Mariam Basajja, M. Suchánek, Getu Tadele Taye, S. Amare, Mutwalibi Nambobi, Sakinat Folorunso, Ruduan Plug, Francisca Onaolapo Oladipo, M. van Reisen
{"title":"Proof of Concept and Horizons on Deployment of FAIR Data Points in the COVID-19 Pandemic","authors":"Mariam Basajja, M. Suchánek, Getu Tadele Taye, S. Amare, Mutwalibi Nambobi, Sakinat Folorunso, Ruduan Plug, Francisca Onaolapo Oladipo, M. van Reisen","doi":"10.1162/dint_a_00179","DOIUrl":null,"url":null,"abstract":"Abstract Rapid and effective data sharing is necessary to control disease outbreaks, such as the current coronavirus pandemic. Despite the existence of data sharing agreements, data silos, lack of interoperable data infrastructures, and different institutional jurisdictions hinder data sharing and accessibility. To overcome these challenges, the Virus Outbreak Data Network (VODAN)-Africa initiative is championing an approach in which data never leaves the institution where it was generated, but, instead, algorithms can visit the data and query multiple datasets in an automated way. To make this possible, FAIR Data Points—distributed data repositories that host machine-actionable data and metadata that adhere to the FAIR Guidelines (that data should be Findable, Accessible, Interoperable and Reusable)—have been deployed in participating institutions using a dockerised bundle of tools called VODAN in a Box (ViB). ViB is a set of multiple FAIR-enabling and open-source services with a single goal: to support the gathering of World Health Organization (WHO) electronic case report forms (eCRFs) as FAIR data in a machine-actionable way, but without exposing or transferring the data outside the facility. Following the execution of a proof of concept, ViB was deployed in Uganda and Leiden University. The proof of concept generated a first query which was implemented across two continents. A SWOT (strengths, weaknesses, opportunities and threats) analysis of the architecture was carried out and established the changes needed for specifications and requirements for the future development of the solution.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"4 1","pages":"917-937"},"PeriodicalIF":1.3000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00179","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Rapid and effective data sharing is necessary to control disease outbreaks, such as the current coronavirus pandemic. Despite the existence of data sharing agreements, data silos, lack of interoperable data infrastructures, and different institutional jurisdictions hinder data sharing and accessibility. To overcome these challenges, the Virus Outbreak Data Network (VODAN)-Africa initiative is championing an approach in which data never leaves the institution where it was generated, but, instead, algorithms can visit the data and query multiple datasets in an automated way. To make this possible, FAIR Data Points—distributed data repositories that host machine-actionable data and metadata that adhere to the FAIR Guidelines (that data should be Findable, Accessible, Interoperable and Reusable)—have been deployed in participating institutions using a dockerised bundle of tools called VODAN in a Box (ViB). ViB is a set of multiple FAIR-enabling and open-source services with a single goal: to support the gathering of World Health Organization (WHO) electronic case report forms (eCRFs) as FAIR data in a machine-actionable way, but without exposing or transferring the data outside the facility. Following the execution of a proof of concept, ViB was deployed in Uganda and Leiden University. The proof of concept generated a first query which was implemented across two continents. A SWOT (strengths, weaknesses, opportunities and threats) analysis of the architecture was carried out and established the changes needed for specifications and requirements for the future development of the solution.