{"title":"Estimation of the Uplift Resistance for an Under-Reamed Pile in Dry Sand Using Machine Learning","authors":"Sharad Dadhich, J. Sharma, Madhav R. Madhira","doi":"10.2478/sjce-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract Under-reamed piles are extensively used to resist uplift forces and settlements. The objective of the present study is to develop various machine learning models (linear and non-linear) and determine the best model to estimate the ultimate uplift resistance of under-reamed piles embedded in cohesionless soil. The machine learning models were developed considering the following input parameters: the density index, dry density, base diameter, angle of an enlarged base with a vertical axis, shaft diameter, and embedment ratio. A linear equation is proposed to estimate the ultimate uplift resistance based on Multivariate Linear Regression analysis with a mean absolute error equaling 0.25kN and 0.50kN for loose and dense sands respectively. The Decision Tree Regression model provides an excellent degree of accuracy with a mean absolute error of 0.02kN and 0.02kN in cases of loose and dense sands respectively.","PeriodicalId":43574,"journal":{"name":"Slovak Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Slovak Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sjce-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Under-reamed piles are extensively used to resist uplift forces and settlements. The objective of the present study is to develop various machine learning models (linear and non-linear) and determine the best model to estimate the ultimate uplift resistance of under-reamed piles embedded in cohesionless soil. The machine learning models were developed considering the following input parameters: the density index, dry density, base diameter, angle of an enlarged base with a vertical axis, shaft diameter, and embedment ratio. A linear equation is proposed to estimate the ultimate uplift resistance based on Multivariate Linear Regression analysis with a mean absolute error equaling 0.25kN and 0.50kN for loose and dense sands respectively. The Decision Tree Regression model provides an excellent degree of accuracy with a mean absolute error of 0.02kN and 0.02kN in cases of loose and dense sands respectively.