Estimation of the Uplift Resistance for an Under-Reamed Pile in Dry Sand Using Machine Learning

IF 0.6 Q4 ENGINEERING, CIVIL Slovak Journal of Civil Engineering Pub Date : 2022-09-01 DOI:10.2478/sjce-2022-0017
Sharad Dadhich, J. Sharma, Madhav R. Madhira
{"title":"Estimation of the Uplift Resistance for an Under-Reamed Pile in Dry Sand Using Machine Learning","authors":"Sharad Dadhich, J. Sharma, Madhav R. Madhira","doi":"10.2478/sjce-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract Under-reamed piles are extensively used to resist uplift forces and settlements. The objective of the present study is to develop various machine learning models (linear and non-linear) and determine the best model to estimate the ultimate uplift resistance of under-reamed piles embedded in cohesionless soil. The machine learning models were developed considering the following input parameters: the density index, dry density, base diameter, angle of an enlarged base with a vertical axis, shaft diameter, and embedment ratio. A linear equation is proposed to estimate the ultimate uplift resistance based on Multivariate Linear Regression analysis with a mean absolute error equaling 0.25kN and 0.50kN for loose and dense sands respectively. The Decision Tree Regression model provides an excellent degree of accuracy with a mean absolute error of 0.02kN and 0.02kN in cases of loose and dense sands respectively.","PeriodicalId":43574,"journal":{"name":"Slovak Journal of Civil Engineering","volume":"30 1","pages":"17 - 26"},"PeriodicalIF":0.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Slovak Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sjce-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Under-reamed piles are extensively used to resist uplift forces and settlements. The objective of the present study is to develop various machine learning models (linear and non-linear) and determine the best model to estimate the ultimate uplift resistance of under-reamed piles embedded in cohesionless soil. The machine learning models were developed considering the following input parameters: the density index, dry density, base diameter, angle of an enlarged base with a vertical axis, shaft diameter, and embedment ratio. A linear equation is proposed to estimate the ultimate uplift resistance based on Multivariate Linear Regression analysis with a mean absolute error equaling 0.25kN and 0.50kN for loose and dense sands respectively. The Decision Tree Regression model provides an excellent degree of accuracy with a mean absolute error of 0.02kN and 0.02kN in cases of loose and dense sands respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干沙下扩孔桩抗拔阻力的机器学习估计
摘要下扩孔桩广泛用于抗拔力和抗沉降。本研究的目的是开发各种机器学习模型(线性和非线性),并确定最佳模型来估计嵌入无黏性土壤中的扩孔桩的最终抗拔能力。考虑以下输入参数开发机器学习模型:密度指数、干密度、底座直径、放大底座与垂直轴的角度、轴直径和嵌入比。基于多元线性回归分析,提出了松散砂和致密砂极限抗拔阻力的线性方程,平均绝对误差分别为0.25kN和0.50kN。决策树回归模型提供了极好的精度,在松散和致密砂的情况下,平均绝对误差分别为0.02kN和0.02kN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
29 weeks
期刊最新文献
The Angle of the Shear Resistance of Danube Gravel Derived from the Dynamic Penetration Test Behavior of an Embankment on Stone Column-Reinforced Soft Soil Repair of Cracks in Concrete with the Microbial-Induced Calcite Precipitation (MICP) Method The Use of Vertical Gardens as a Network of Urban Navigation Elements with a Positive Impact on Biodiversity and Microclimate in a Dense Urban Environment Experimental Contribution to Study the Physico-Mechanical and Thermal Properties of Lightweight Cellular Concrete Prepared With Different Types of Sand and Waste Marble Powder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1