{"title":"Seat-To-Head Transmissibility Responses of Seated Human Body Coupled with Visco-Elastic Seats","authors":"K. Dewangan, Yu-Ta Yao, S. Rakheja","doi":"10.3390/vibration5040051","DOIUrl":null,"url":null,"abstract":"This study investigated the seat-to-head vibration transmissibility (STHT) responses of 58 subjects (31 males and 27 females) seated on three different elastic seats with (WB) and without back support (NB) and under three levels of vertical vibration (0.25, 0.50 and 0.75 m/s2 RMS) in the 0.50–20 Hz range. The STHT responses with elastic seats were significantly different from the widely reported responses with rigid seats, irrespective of sitting and excitation conditions. The peak STHT magnitudes with elastic seats were relatively higher than those obtained with a rigid seat. Moreover, the transmission of seat vibration showed a strong dependence on the elastic properties of the body-seat coupling. The primary resonance frequencies were also significantly different among the elastic seats. Compared to NB conditions, the peak STHT magnitudes and the primary resonance frequencies obtained with WB conditions were significantly lower. An increase in excitation magnitude resulted in a statistically significant (p < 0.001) decrease in the primary resonance frequency.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration5040051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
This study investigated the seat-to-head vibration transmissibility (STHT) responses of 58 subjects (31 males and 27 females) seated on three different elastic seats with (WB) and without back support (NB) and under three levels of vertical vibration (0.25, 0.50 and 0.75 m/s2 RMS) in the 0.50–20 Hz range. The STHT responses with elastic seats were significantly different from the widely reported responses with rigid seats, irrespective of sitting and excitation conditions. The peak STHT magnitudes with elastic seats were relatively higher than those obtained with a rigid seat. Moreover, the transmission of seat vibration showed a strong dependence on the elastic properties of the body-seat coupling. The primary resonance frequencies were also significantly different among the elastic seats. Compared to NB conditions, the peak STHT magnitudes and the primary resonance frequencies obtained with WB conditions were significantly lower. An increase in excitation magnitude resulted in a statistically significant (p < 0.001) decrease in the primary resonance frequency.