Environmentally sustainable synthesis of cyclic carbonates from epoxides and CO2 promoted by MCM-41 supported dual imidazolium ionic liquids catalysts

IF 1.4 4区 工程技术 Q3 Chemical Engineering International Journal of Chemical Reactor Engineering Pub Date : 2023-01-23 DOI:10.1515/ijcre-2022-0210
Y. Hu, Zhijuan Sun
{"title":"Environmentally sustainable synthesis of cyclic carbonates from epoxides and CO2 promoted by MCM-41 supported dual imidazolium ionic liquids catalysts","authors":"Y. Hu, Zhijuan Sun","doi":"10.1515/ijcre-2022-0210","DOIUrl":null,"url":null,"abstract":"Abstract A type of MCM-41 supported dual imidazolium ionic liquids have been synthesized and efficiently used as catalysts in the sustainable chemical conversion of CO2 and epoxides into cyclic carbonates. It was shown that the highest efficiency was achieved in the cycloaddition of a variety of epoxides and CO2 in the presence of the MCM-41@DILSCN solid catalyst under mild conditions. More interestingly, the catalyst was stable, very active, robust, and displayed good recyclability without significant loss of catalytic activity after six consecutive cycles during the process. Overall, the present protocol of synthesizing cyclic carbonates under solvent free conditions using MCM-41@DILSCN is promising for industrial applications.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0210","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A type of MCM-41 supported dual imidazolium ionic liquids have been synthesized and efficiently used as catalysts in the sustainable chemical conversion of CO2 and epoxides into cyclic carbonates. It was shown that the highest efficiency was achieved in the cycloaddition of a variety of epoxides and CO2 in the presence of the MCM-41@DILSCN solid catalyst under mild conditions. More interestingly, the catalyst was stable, very active, robust, and displayed good recyclability without significant loss of catalytic activity after six consecutive cycles during the process. Overall, the present protocol of synthesizing cyclic carbonates under solvent free conditions using MCM-41@DILSCN is promising for industrial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MCM-41负载型双咪唑离子液体催化剂催化环氧化物和CO2合成环碳酸盐的研究
合成了一种MCM-41负载型双咪唑离子液体,并将其作为催化剂有效地用于CO2和环氧化物可持续化学转化为环状碳酸盐。结果表明,在温和条件下,MCM-41@DILSCN固体催化剂存在下,多种环氧化物和CO2的环加成效率最高。更有趣的是,该催化剂在连续六次循环后表现出稳定、非常活跃、坚固、良好的可回收性,并且没有明显的催化活性损失。总的来说,目前使用MCM-41@DILSCN在无溶剂条件下合成环状碳酸盐的方案具有工业应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.
期刊最新文献
VOCs (toluene) removal from iron ore sintering flue gas via LaBO3 (B = Cu, Fe, Cr, Mn, Co) perovskite catalysts: experiment and mechanism Ethyl acetate production by Fischer esterification: use of excess of acetic acid and complete separation sequence Thermodynamic and kinetic study on the catalysis of tributyl aconitate by Amberlyst-15 in a cyclic fixed-bed reactor R dot approach for kinetic modelling of WGS over noble metals Retraction of: Computational fluid dynamic simulations to improve heat transfer in shell tube heat exchangers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1