Trust-based Selfish Node Detection Mechanism using Beta Distribution in Wireless Sensor Network

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of ICT Research and Applications Pub Date : 2019-04-30 DOI:10.5614/ITBJ.ICT.RES.APPL.2019.13.1.6
K. Devi, R. Ganesan
{"title":"Trust-based Selfish Node Detection Mechanism using Beta Distribution in Wireless Sensor Network","authors":"K. Devi, R. Ganesan","doi":"10.5614/ITBJ.ICT.RES.APPL.2019.13.1.6","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) are placed in open environments for the collection of data and are vulnerable to external and internal attacks. The cryptographic mechanisms implemented so far, such as authorization and authentication, are used to restrict external sensor node attacks but cannot prevent internal node attacks. In order to evade internal attacks trust mechanisms are used. In trust mechanisms, firstly, the sensor nodes are monitored using the popular Watchdog mechanism. However, traditional trust models do not pay much attention to selective forwarding and consecutive packet dropping. Sometimes, sensitive data are dropped by internal attackers. This problem is addressed in our proposed model by detecting selective forwarding and consecutive failure of sending packets using the Beta probability density function model.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2019.13.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 8

Abstract

Wireless sensor networks (WSNs) are placed in open environments for the collection of data and are vulnerable to external and internal attacks. The cryptographic mechanisms implemented so far, such as authorization and authentication, are used to restrict external sensor node attacks but cannot prevent internal node attacks. In order to evade internal attacks trust mechanisms are used. In trust mechanisms, firstly, the sensor nodes are monitored using the popular Watchdog mechanism. However, traditional trust models do not pay much attention to selective forwarding and consecutive packet dropping. Sometimes, sensitive data are dropped by internal attackers. This problem is addressed in our proposed model by detecting selective forwarding and consecutive failure of sending packets using the Beta probability density function model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Beta分布的基于信任的无线传感器网络自私节点检测机制
无线传感器网络(wsn)被放置在开放的环境中收集数据,容易受到外部和内部攻击。目前实现的加密机制(如授权和认证)用于限制外部传感器节点的攻击,而不能防止内部节点的攻击。为了避免内部攻击,采用了信任机制。在信任机制中,首先使用流行的Watchdog机制对传感器节点进行监控。然而,传统的信任模型并不重视选择性转发和连续丢包。有时,内部攻击者会丢失敏感数据。在我们提出的模型中,通过使用Beta概率密度函数模型检测选择性转发和连续发送数据包的失败,解决了这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of ICT Research and Applications
Journal of ICT Research and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.60
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊介绍: Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Smart Card-based Access Control System using Isolated Many-to-Many Authentication Scheme for Electric Vehicle Charging Stations The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs Machine Learning-based Early Detection and Prognosis of the Covid-19 Pandemic Improving Robustness Using MixUp and CutMix Augmentation for Corn Leaf Diseases Classification based on ConvMixer Architecture Generative Adversarial Networks Based Scene Generation on Indian Driving Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1