Robust Inference for High‐Dimensional Single Index Models

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Scandinavian Journal of Statistics Pub Date : 2023-03-13 DOI:10.1111/sjos.12638
Dongxiao Han, Miao Han, Jian Huang, Yuanyuan Lin
{"title":"Robust Inference for\n High‐Dimensional\n Single Index Models","authors":"Dongxiao Han, Miao Han, Jian Huang, Yuanyuan Lin","doi":"10.1111/sjos.12638","DOIUrl":null,"url":null,"abstract":"We propose a robust inference method for high‐dimensional single index models with an unknown link function and elliptically symmetrically distributed covariates, focusing on signal recovery and inference. The proposed method is built on the Huber loss and the estimation of the unknown link function is avoided. The ℓ1$$ {\\ell}_1 $$ and ℓ2$$ {\\ell}_2 $$ consistency of a Lasso estimator up to a multiplicative scalar is established. When the covariance matrix of the predictors satisfies the irrepresentable condition, our method is shown to recover the signed support of the true parameter under mild conditions. Based on a debiased Lasso estimator, we study component‐wise and group inference for the high‐dimensional index parameter. The finite‐sample performance of our method is evaluated through extensive simulation studies. An application to a riboflavin production dataset is provided to illustrate the proposed method.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12638","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a robust inference method for high‐dimensional single index models with an unknown link function and elliptically symmetrically distributed covariates, focusing on signal recovery and inference. The proposed method is built on the Huber loss and the estimation of the unknown link function is avoided. The ℓ1$$ {\ell}_1 $$ and ℓ2$$ {\ell}_2 $$ consistency of a Lasso estimator up to a multiplicative scalar is established. When the covariance matrix of the predictors satisfies the irrepresentable condition, our method is shown to recover the signed support of the true parameter under mild conditions. Based on a debiased Lasso estimator, we study component‐wise and group inference for the high‐dimensional index parameter. The finite‐sample performance of our method is evaluated through extensive simulation studies. An application to a riboflavin production dataset is provided to illustrate the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维单指标模型的鲁棒推断
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
期刊最新文献
Xuran Meng and Yi Li's contribution to the Discussion of "On optimal linear prediction" by I. Helland. Enriched Pitman-Yor processes. Post-selection inference for the Cox model with interval-censored data. Post-selection inference for high-dimensional mediation analysis with survival outcomes. Model‐based clustering in simple hypergraphs through a stochastic blockmodel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1