Field evaluation of a novel holographic single-image depth reconstruction sensor

IF 1.9 4区 物理与天体物理 Q3 OPTICS Journal of the European Optical Society-Rapid Publications Pub Date : 2023-04-12 DOI:10.1051/jeos/2023017
Simon Hartlieb
{"title":"Field evaluation of a novel holographic single-image depth reconstruction sensor","authors":"Simon Hartlieb","doi":"10.1051/jeos/2023017","DOIUrl":null,"url":null,"abstract":"A camera-based single-image sensor is presented, that is able to measure the distance of one or multiple object points (light emitters). The sensor consists of a camera, whose lens is upgraded with a diffractive optical element (DOE). It fulfils two tasks: adding a vortex point spread function (PSF) and replication of the vortex PSFs to a predefined pattern of K spots. Both, shape and rotation of the vortex PSF is sensitive to defocus. The sensor concept is presented and its capabilities evaluated both on axis and off-axis. The achieved standard deviation of the error ranges between 8.5 µm (on-axis) and 3.5 µm (off-axis) within a measurement range of 20 mm. However, as soon as calibration and measurement position no longer match, the accuracy is limited. An analysis of the effects responsible for this are also part of the publication.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023017","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A camera-based single-image sensor is presented, that is able to measure the distance of one or multiple object points (light emitters). The sensor consists of a camera, whose lens is upgraded with a diffractive optical element (DOE). It fulfils two tasks: adding a vortex point spread function (PSF) and replication of the vortex PSFs to a predefined pattern of K spots. Both, shape and rotation of the vortex PSF is sensitive to defocus. The sensor concept is presented and its capabilities evaluated both on axis and off-axis. The achieved standard deviation of the error ranges between 8.5 µm (on-axis) and 3.5 µm (off-axis) within a measurement range of 20 mm. However, as soon as calibration and measurement position no longer match, the accuracy is limited. An analysis of the effects responsible for this are also part of the publication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型全息单像深度重建传感器的现场评价
提出了一种基于相机的单图像传感器,它能够测量一个或多个物体点(光源)的距离。该传感器由一个相机组成,其镜头升级为衍射光学元件(DOE)。它完成了两个任务:添加涡点扩展函数(PSF)和将涡点扩展函数复制到预定义的K点模式中。涡旋PSF的形状和旋转对离焦都很敏感。提出了传感器的概念,并对其在轴上和离轴上的性能进行了评估。在20mm的测量范围内,测量误差的标准偏差范围为8.5µm(顺轴)~ 3.5µm(离轴)。然而,一旦校准和测量位置不再匹配,精度就会受到限制。对造成这种情况的影响的分析也是该出版物的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
期刊最新文献
Detection of zinc in pig feed based on the cavities of different shapes combined with LIBS The Symmetric and Antisymmetric Phase Modulation for the Joint Spectral Amplitude of the Biphotons in SPDC Spectral reflectance fitting based on land-based hyperspectral imaging and semi-empirical kernel-driven model for typical camouflage materials Quantum coherence and entanglement of the system of a five−level atom in the presence of nonlinear fields Implementation of FORMIDABLE: a generalized differential optical design library with NURBS capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1