{"title":"Flight control and collision avoidance of three UAVs following each other","authors":"Z. Kutpanova, H. Temeltas, S. Kulmamirov","doi":"10.13111/2066-8201.2022.14.4.7","DOIUrl":null,"url":null,"abstract":"An unmanned aerial vehicle is a hardware and software complex with multi-purpose control. Unlike manned aviation, an unmanned aerial vehicle requires additional modules in its control system. These include the drone itself, the operator's workplace, software, data transmission lines and blocks necessary to fulfil the set flight objectives. The range of applications of unmanned aerial vehicles in the civil sector is not limited, but with the current state of the legal framework for the use of airspace, flight operations are somewhat difficult. The article formulates the main scientific position on the methodology of solving auxiliary tasks set in the work. The methodology specifies the main research stages, and it is a generalized methodological algorithm for the implementation of scientific research, which provides theoretical developments, field observations and simulation computer modelling. As a result of the study, it was found that the motion control systems of unmanned aerial vehicles are used for the process of their differentiation by the principle of complete external control, the advantages of which are considered in the work. For external control of divergence process of unmanned aerial vehicles, a method is considered for assessing the situation of convergence of unmanned aerial vehicles and choosing the manoeuvre of their difference using the area of dangerous courses, unmanned aerial vehicles approach, and it is possible to take into account the inertia of unmanned aerial vehicles when turning and the presence of navigational hazards that are in the manoeuvring area.","PeriodicalId":37556,"journal":{"name":"INCAS Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INCAS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13111/2066-8201.2022.14.4.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
An unmanned aerial vehicle is a hardware and software complex with multi-purpose control. Unlike manned aviation, an unmanned aerial vehicle requires additional modules in its control system. These include the drone itself, the operator's workplace, software, data transmission lines and blocks necessary to fulfil the set flight objectives. The range of applications of unmanned aerial vehicles in the civil sector is not limited, but with the current state of the legal framework for the use of airspace, flight operations are somewhat difficult. The article formulates the main scientific position on the methodology of solving auxiliary tasks set in the work. The methodology specifies the main research stages, and it is a generalized methodological algorithm for the implementation of scientific research, which provides theoretical developments, field observations and simulation computer modelling. As a result of the study, it was found that the motion control systems of unmanned aerial vehicles are used for the process of their differentiation by the principle of complete external control, the advantages of which are considered in the work. For external control of divergence process of unmanned aerial vehicles, a method is considered for assessing the situation of convergence of unmanned aerial vehicles and choosing the manoeuvre of their difference using the area of dangerous courses, unmanned aerial vehicles approach, and it is possible to take into account the inertia of unmanned aerial vehicles when turning and the presence of navigational hazards that are in the manoeuvring area.
期刊介绍:
INCAS BULLETIN is a scientific quartely journal published by INCAS – National Institute for Aerospace Research “Elie Carafoli” (under the aegis of The Romanian Academy) Its current focus is the aerospace field, covering fluid mechanics, aerodynamics, flight theory, aeroelasticity, structures, applied control, mechatronics, experimental aerodynamics, computational methods. All submitted papers are peer-reviewed. The journal will publish reports and short research original papers of substance. Unique features distinguishing this journal: R & D reports in aerospace sciences in Romania The INCAS BULLETIN of the National Institute for Aerospace Research "Elie Carafoli" includes the following sections: 1) FULL PAPERS. -Strength of materials, elasticity, plasticity, aeroelasticity, static and dynamic analysis of structures, vibrations and impact. -Systems, mechatronics and control in aerospace. -Materials and tribology. -Kinematics and dynamics of mechanisms, friction, lubrication. -Measurement technique. -Aeroacoustics, ventilation, wind motors. -Management in Aerospace Activities. 2) TECHNICAL-SCIENTIFIC NOTES and REPORTS. Includes: case studies, technical-scientific notes and reports on published areas. 3) INCAS NEWS. Promote and emphasise INCAS technical base and achievements. 4) BOOK REVIEWS.