{"title":"Platform for transverse evaluation of control strategies for multi-energy smart grids","authors":"Timothé Gronier , Erwin Franquet , Stéphane Gibout","doi":"10.1016/j.segy.2022.100079","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the PEACEFULNESS software platform (Platform for transvErse evAluation of Control stratEgies For mULti-eNErgy Smart gridS), an open framework dedicated to multi-energy smart-grids, based on a techno-economic model that integrates economic considerations (contracts). As such, it is mainly oriented towards the evaluation of multi-energy grid supervision strategies, that is, energy management, and the corresponding policies and legal organization. The main goal is then to highlight the various possible behaviors and strategies to organize the probable future interconnections between the different energy carriers. In particular, it aims at investigating how to maximize the use of renewable energy sources (RES), using Demand Side Management (DSM) techniques and energy storage, in a shared economy context. The open-source tool PEACEFULNESS, written in Python, is described here in detail. It combines a top-down description of the energy networks and connections between the various agents (energy providers, distribution system operators, aggregators, consumers, producers, prosumers, etc.), together with a techno-economic bottom-up description for all devices. Here, both public databases and users’ data (basic heating demands or based on building modeling) can be used, as well as generic or more specific models (e.g., PV panels with constant or temperature-dependent efficiency). One of its major unique features compared with other tools is that it extends the use of DSM techniques to various energy grids which can also interact together. Furthermore, different economic models can be set for both the aggregators and the customers, and even within these groups. As a last competitive advantage, PEACEFULNESS allows the user to simulate the operation and supervision of tens up to hundreds of thousands of agents. It also provides a reporting system giving access to all the data, with a configurable granularity and frequency for the retained indicators. Finally, several validation cases are presented, followed by a series of test cases with increasing size: a smart home, a smart district (2 000 dwellings) and a smart community (50 000 dwellings).</p></div>","PeriodicalId":34738,"journal":{"name":"Smart Energy","volume":"7 ","pages":"Article 100079"},"PeriodicalIF":5.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266695522200017X/pdfft?md5=766aa929312637ad80f32cd57ffd4df1&pid=1-s2.0-S266695522200017X-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695522200017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents the PEACEFULNESS software platform (Platform for transvErse evAluation of Control stratEgies For mULti-eNErgy Smart gridS), an open framework dedicated to multi-energy smart-grids, based on a techno-economic model that integrates economic considerations (contracts). As such, it is mainly oriented towards the evaluation of multi-energy grid supervision strategies, that is, energy management, and the corresponding policies and legal organization. The main goal is then to highlight the various possible behaviors and strategies to organize the probable future interconnections between the different energy carriers. In particular, it aims at investigating how to maximize the use of renewable energy sources (RES), using Demand Side Management (DSM) techniques and energy storage, in a shared economy context. The open-source tool PEACEFULNESS, written in Python, is described here in detail. It combines a top-down description of the energy networks and connections between the various agents (energy providers, distribution system operators, aggregators, consumers, producers, prosumers, etc.), together with a techno-economic bottom-up description for all devices. Here, both public databases and users’ data (basic heating demands or based on building modeling) can be used, as well as generic or more specific models (e.g., PV panels with constant or temperature-dependent efficiency). One of its major unique features compared with other tools is that it extends the use of DSM techniques to various energy grids which can also interact together. Furthermore, different economic models can be set for both the aggregators and the customers, and even within these groups. As a last competitive advantage, PEACEFULNESS allows the user to simulate the operation and supervision of tens up to hundreds of thousands of agents. It also provides a reporting system giving access to all the data, with a configurable granularity and frequency for the retained indicators. Finally, several validation cases are presented, followed by a series of test cases with increasing size: a smart home, a smart district (2 000 dwellings) and a smart community (50 000 dwellings).