{"title":"Modeling and Performance Analysis of Three Zone-Based Registration Scheme in Wireless Communication Networks","authors":"Hee-Seon Jang, Jang-Hyun Baek","doi":"10.3390/app131810064","DOIUrl":null,"url":null,"abstract":"For wireless communication networks, researchers have proposed many schemes to reduce the cost of location registration and paging signals caused by the mobility of user equipment (UE). Among them, a zone-based method that designates one zone (1Z, group of cells) as a registration area (RA) and then performs registration whenever the UE leaves the RA is commonly adopted due to its convenient implementation. However, the performance of 1Z is known to be very poor when the UE frequently crosses the RA’s boundary requesting location updates. Two or three zone-based schemes (2Z or 3Z) have since been recommended to overcome these limitations. In our previous work, we analyzed the performances of 1Z, 2Z, and 3Z systems while assuming a square-shaped zone. However, there is no reason why the shape of the zone is limited to a square. This paper analyzes the performance of 3Z while assuming a hexagonal-shaped rather than a square-shaped zone. Using a semi-Markov process theory, registration and paging costs are evaluated after defining states in 3Z operations and calculating the transition probability between states. Based on various realistic parameters, the numerical results showed that the 3Z outperformed 1Z and 2Z for most call-to-mobility ratio (CMR) values. The performance of 3Z was improved more when the registration cost decreased if the probability of returning to the previously registered zone increased or the time staying in the zone decreased. The 3Z system is easy to implement with simple software modifications. It can be dynamically applied as an efficient mobility management method in the future for various devices that will emerge in the 5G/6G environment.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810064","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For wireless communication networks, researchers have proposed many schemes to reduce the cost of location registration and paging signals caused by the mobility of user equipment (UE). Among them, a zone-based method that designates one zone (1Z, group of cells) as a registration area (RA) and then performs registration whenever the UE leaves the RA is commonly adopted due to its convenient implementation. However, the performance of 1Z is known to be very poor when the UE frequently crosses the RA’s boundary requesting location updates. Two or three zone-based schemes (2Z or 3Z) have since been recommended to overcome these limitations. In our previous work, we analyzed the performances of 1Z, 2Z, and 3Z systems while assuming a square-shaped zone. However, there is no reason why the shape of the zone is limited to a square. This paper analyzes the performance of 3Z while assuming a hexagonal-shaped rather than a square-shaped zone. Using a semi-Markov process theory, registration and paging costs are evaluated after defining states in 3Z operations and calculating the transition probability between states. Based on various realistic parameters, the numerical results showed that the 3Z outperformed 1Z and 2Z for most call-to-mobility ratio (CMR) values. The performance of 3Z was improved more when the registration cost decreased if the probability of returning to the previously registered zone increased or the time staying in the zone decreased. The 3Z system is easy to implement with simple software modifications. It can be dynamically applied as an efficient mobility management method in the future for various devices that will emerge in the 5G/6G environment.
期刊介绍:
Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.