Wander Effect on Pavement Performance for Application in Connected and Autonomous Vehicles

IF 2.7 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Infrastructures Pub Date : 2023-07-31 DOI:10.3390/infrastructures8080119
J. Pais, P. Pereira, L. Thives
{"title":"Wander Effect on Pavement Performance for Application in Connected and Autonomous Vehicles","authors":"J. Pais, P. Pereira, L. Thives","doi":"10.3390/infrastructures8080119","DOIUrl":null,"url":null,"abstract":"Connected and Autonomous Vehicles (CAV) will change how road engineers design road pavements because they can position themselves within a traffic lane, keeping their position in the lane more precisely than human-driven vehicles. These vehicles will have lower lateral wandering, which can induce more damage to pavements, such as cracking and permanent deformation, than the conventional vehicles, with consequences for the infrastructures due to the increased cracking and reduced safety due to the rutting. Thus, it is essential to assess the wander effect on pavement performance to define policies for its implementation on CAV. This paper studies the impact of the lateral wander of the traffic on pavement performance, considering its fatigue and permanent deformation resistance. This impact can be used to define limits for the wander to minimize distresses on the pavement. The results of this study allow us to conclude that for a pavement with a 10 cm asphalt layer, the wander effect is more significant for fatigue life. A pavement life increase of 20% was observed for a wander of 0.2 m, while for 0.6 m, the fatigue life can increase up to 48%. For the permanent deformation, a pavement life increase of 2% for a wander of 0.2 m was observed, but for 0.6 m, the pavement life can be increased up to 34%.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrastructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/infrastructures8080119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Connected and Autonomous Vehicles (CAV) will change how road engineers design road pavements because they can position themselves within a traffic lane, keeping their position in the lane more precisely than human-driven vehicles. These vehicles will have lower lateral wandering, which can induce more damage to pavements, such as cracking and permanent deformation, than the conventional vehicles, with consequences for the infrastructures due to the increased cracking and reduced safety due to the rutting. Thus, it is essential to assess the wander effect on pavement performance to define policies for its implementation on CAV. This paper studies the impact of the lateral wander of the traffic on pavement performance, considering its fatigue and permanent deformation resistance. This impact can be used to define limits for the wander to minimize distresses on the pavement. The results of this study allow us to conclude that for a pavement with a 10 cm asphalt layer, the wander effect is more significant for fatigue life. A pavement life increase of 20% was observed for a wander of 0.2 m, while for 0.6 m, the fatigue life can increase up to 48%. For the permanent deformation, a pavement life increase of 2% for a wander of 0.2 m was observed, but for 0.6 m, the pavement life can be increased up to 34%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网联自动驾驶汽车路面性能的漂移效应
联网和自动驾驶汽车(CAV)将改变道路工程师设计路面的方式,因为它们可以将自己定位在交通车道内,比人类驾驶的汽车更精确地保持在车道上的位置。与传统车辆相比,这些车辆将具有较低的横向徘徊,这可能会对路面造成更大的破坏,例如裂缝和永久变形,并对基础设施造成影响,因为裂缝增加,车辙降低了安全性。因此,有必要评估漫游对路面性能的影响,以确定其在CAV上实施的政策。本文研究了车辆横向漂移对路面性能的影响,同时考虑了路面的抗疲劳和抗永久变形能力。这种影响可以用来定义漫游的限制,以尽量减少人行道上的痛苦。研究结果表明,对于铺设10 cm沥青层的路面,漂移效应对疲劳寿命的影响更为显著。行走0.2 m时,路面寿命提高20%,行走0.6 m时,路面疲劳寿命提高48%。对于永久变形,移动0.2 m时,路面寿命增加2%,移动0.6 m时,路面寿命可增加34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Infrastructures
Infrastructures Engineering-Building and Construction
CiteScore
5.20
自引率
7.70%
发文量
145
审稿时长
11 weeks
期刊最新文献
Exploring the Cyclic Behaviour of URM Walls with and without Damp-Proof Course (DPC) Membranes through Discrete Element Method Modeling Variability in Seismic Analysis of Concrete Gravity Dams: A Parametric Analysis of Koyna and Pine Flat Dams Smartphone-Based Cost-Effective Pavement Performance Model Development Using a Machine Learning Technique with Limited Data State of the Art Review of Ageing of Bituminous Binders and Asphalt Mixtures: Ageing Simulation Techniques, Ageing Inhibitors and the Relationship between Simulated Ageing and Field Ageing On the Generation of Digital Data and Models from Point Clouds: Application to a Pedestrian Bridge Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1