Short text classification applied to item description: Some methods evaluation

Gilsiley Henrique Darú, Felipe Daltrozo da Motta Motta, Antonio Castelo, G. Loch
{"title":"Short text classification applied to item description: Some methods evaluation","authors":"Gilsiley Henrique Darú, Felipe Daltrozo da Motta Motta, Antonio Castelo, G. Loch","doi":"10.5433/1679-0375.2022v43n2p189","DOIUrl":null,"url":null,"abstract":"The increasing demand for information classification based on content in the age of social media and e-commerce has led to the need for automated product classification using their descriptions. This study aims to evaluate various techniques for this task, with a focus on descriptions written in Portuguese. A pipeline is implemented to preprocess the data, including lowercasing, accent removal, and unigram tokenization. The bag of words method is then used to convert text into numerical data, and five classification techniques are applied: argmaxtf, argmaxtfnorm, argmaxtfidf from information retrieval, and two machine learning methods logistic regression and support vector machines. The performance of each technique is evaluated using simple accuracy via thirty-fold cross validation. The results show that logistic regression achieves the highest mean accuracy among the evaluated techniques.","PeriodicalId":30173,"journal":{"name":"Semina Ciencias Exatas e Tecnologicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semina Ciencias Exatas e Tecnologicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5433/1679-0375.2022v43n2p189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The increasing demand for information classification based on content in the age of social media and e-commerce has led to the need for automated product classification using their descriptions. This study aims to evaluate various techniques for this task, with a focus on descriptions written in Portuguese. A pipeline is implemented to preprocess the data, including lowercasing, accent removal, and unigram tokenization. The bag of words method is then used to convert text into numerical data, and five classification techniques are applied: argmaxtf, argmaxtfnorm, argmaxtfidf from information retrieval, and two machine learning methods logistic regression and support vector machines. The performance of each technique is evaluated using simple accuracy via thirty-fold cross validation. The results show that logistic regression achieves the highest mean accuracy among the evaluated techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短文本分类在项目描述中的应用:一些评价方法
在社交媒体和电子商务时代,对基于内容的信息分类的需求日益增加,导致需要使用其描述进行自动产品分类。本研究旨在评估这项任务的各种技术,重点是用葡萄牙语写的描述。实现了一个管道来预处理数据,包括小写、重音去除和单字符标记化。然后使用词袋方法将文本转换为数值数据,并应用了五种分类技术:argmaxtf、argmaxtfnorm、argmaxtfidf,以及两种机器学习方法逻辑回归和支持向量机。每种技术的性能通过30倍交叉验证使用简单的准确性进行评估。结果表明,在评估的技术中,逻辑回归达到了最高的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
12
审稿时长
12 weeks
期刊最新文献
Preliminary observations on gastropod predationnaticids in the eastern Amazon Pigment Identification and Depth Profile in Pictorial Artworks by Non-Invasive Hybrid XRD-XRF Portable System Characterization of Pigments and Materials of the Original Body and Additions of the Book of Hours 50,1,1 from the Brazilian National Library Determination of Cu2+ and Zn2+ in Flaxseed Flour by FAAS and DPASV using Different Sample Treatments Nonlinear Canonical correspondence Analysis: Description of the data of Coffee
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1