Thermal Conductivity and Flexural Strength of Two-Step Hot-Pressed SiC Ceramics

IF 1.5 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Transactions of the Indian Ceramic Society Pub Date : 2022-01-02 DOI:10.1080/0371750X.2022.2038672
Jingren Li, Wen‐Zhong Lu, Hai Jiang
{"title":"Thermal Conductivity and Flexural Strength of Two-Step Hot-Pressed SiC Ceramics","authors":"Jingren Li, Wen‐Zhong Lu, Hai Jiang","doi":"10.1080/0371750X.2022.2038672","DOIUrl":null,"url":null,"abstract":"Effects of two-step hot-pressing on microstructure, thermal conductivity and flexural strength of silicon carbide (SiC) ceramics were investigated. A novel combination of aluminium nitride (AlN), La2O3 and LaF3 was employed as sinter additives in this study. SiC ceramics prepared through both one-step (OS samples) and two-step (TS samples) hot-pressing method exhibited high relative densities. Compared with OS samples, the TS samples yielded finer microstructures with both higher thermal conductivities and flexural strengths. Impedance spectroscopy analysis was employed to reinforce the investigation on thermal conductivity variations in different samples. According to the analysis results, TS samples exhibited higher fitting grain and grain boundary resistances, which stood for a lower concentration of vacancies, indicating that two-step hot-pressing is more beneficial to the elimination of defects and improvement of thermal conductivity in SiC ceramics. On the other hand, TS samples were strengthened by a combined effect of finer microstructure and formation of SiC-AlN solid solution, thereby obtained higher flexural strengths. Hence, the present study suggests that two-step hot-pressing is more favorable to the improvement of both thermal conductivity and flexural strength of SiC ceramics with AlN-La2O3-LaF3 additive combinations. GRAPHICAL ABSTRACT","PeriodicalId":23233,"journal":{"name":"Transactions of the Indian Ceramic Society","volume":"81 1","pages":"15 - 21"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Indian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/0371750X.2022.2038672","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Effects of two-step hot-pressing on microstructure, thermal conductivity and flexural strength of silicon carbide (SiC) ceramics were investigated. A novel combination of aluminium nitride (AlN), La2O3 and LaF3 was employed as sinter additives in this study. SiC ceramics prepared through both one-step (OS samples) and two-step (TS samples) hot-pressing method exhibited high relative densities. Compared with OS samples, the TS samples yielded finer microstructures with both higher thermal conductivities and flexural strengths. Impedance spectroscopy analysis was employed to reinforce the investigation on thermal conductivity variations in different samples. According to the analysis results, TS samples exhibited higher fitting grain and grain boundary resistances, which stood for a lower concentration of vacancies, indicating that two-step hot-pressing is more beneficial to the elimination of defects and improvement of thermal conductivity in SiC ceramics. On the other hand, TS samples were strengthened by a combined effect of finer microstructure and formation of SiC-AlN solid solution, thereby obtained higher flexural strengths. Hence, the present study suggests that two-step hot-pressing is more favorable to the improvement of both thermal conductivity and flexural strength of SiC ceramics with AlN-La2O3-LaF3 additive combinations. GRAPHICAL ABSTRACT
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两步热压SiC陶瓷的热导率和弯曲强度
研究了两步热压对碳化硅(SiC)陶瓷微观结构、导热性能和抗弯强度的影响。本研究采用氮化铝(AlN)、La2O3和LaF3的新型组合作为烧结添加剂。通过一步(OS样品)和两步(TS样品)热压法制备的SiC陶瓷都表现出较高的相对密度。与OS样品相比,TS样品产生了更精细的微观结构,具有更高的热导率和弯曲强度。采用阻抗谱分析来加强对不同样品热导率变化的研究。根据分析结果,TS样品表现出更高的拟合晶粒和晶界电阻,这代表了更低的空位浓度,表明两步热压更有利于消除SiC陶瓷中的缺陷和提高其热导率。另一方面,TS样品通过更精细的微观结构和SiC-AlN固溶体的形成的综合作用得到增强,从而获得更高的弯曲强度。因此,本研究表明,添加AlN-La2O3-LaF3的两步热压更有利于提高SiC陶瓷的导热性和抗弯强度。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transactions of the Indian Ceramic Society
Transactions of the Indian Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
2.40
自引率
8.30%
发文量
12
审稿时长
2.3 months
期刊介绍: Transactions of the Indian Ceramic Society is a quarterly Journal devoted to current scientific research, technology and industry-related news on glass and ceramics. The Journal covers subjects such as the chemical, mechanical, optical, electronic and spectroscopic properties of glass and ceramics, and characterization of materials belonging to this family. The Editor invites original research papers, topical reviews, opinions and achievements, as well as industry profiles for publication. The contributions should be accompanied by abstracts, keywords and other details, as outlined in the Instructions for Authors section. News, views and other comments on activities of specific industries and organizations, and also analyses of industrial scenarios are also welcome.
期刊最新文献
Effect of Yb2O3 Addition and Sintering Temperature on the Densification Behavior of Magnesium Aluminate Spinel Powder Perovskite Layer Structure (PLS) Piezoceramics for High Temperature Applications: A Review Effect of Corrosion Inhibitor Pyrovanadate Ions on Microstructure and Corrosion Resistance of MgAl Layered Double Hydroxide Films on LA43M Mg-Li Alloy Doping Mn Induced Modification on the Crystal Structure, Morphology and Optical Properties of Mechanically Activated SrTiO3 Powders Ballistic Resistance of Silicon-Carbide-Based Ceramic and Ultrahigh-Molecular-Weight Polyethylene Composite Armor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1