Reviving Standard-Dynamic-Range Videos for High-Dynamic-Range Devices: A Learning Paradigm With Hybrid Attention Mechanisms

IF 2.3 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE MultiMedia Pub Date : 2023-07-01 DOI:10.1109/MMUL.2023.3270035
Peilin Chen, Wenhan Yang, Shiqi Wang
{"title":"Reviving Standard-Dynamic-Range Videos for High-Dynamic-Range Devices: A Learning Paradigm With Hybrid Attention Mechanisms","authors":"Peilin Chen, Wenhan Yang, Shiqi Wang","doi":"10.1109/MMUL.2023.3270035","DOIUrl":null,"url":null,"abstract":"With the prevalence of high-dynamic-range (HDR) display devices, the demand to convert existing standard-dynamic-range television (SDRTV) video content to its corresponding HDR television (HDRTV) counterpart is growing exponentially. Herein, we propose a two-stage learning paradigm with hybrid attention mechanisms to fully exploit spatial, channelwise, and regional correlations for faithfully driving such conversion. Specifically, in the first domain-mapping stage, the depthwise self-attention and global calibration layer are proposed, which adaptively leverage feature intrarelationships to construct better scene representation and achieve engaging SDRTV-to-HDRTV transformation. In the second highlight-generation stage, considering that the overexposed regions potentially lead to detail loss, which brings enormous challenges to the conversion, we propose a regional self-attention module to specifically restore missing highlights. Extensive experimental results on public databases show that our method outperforms state-of-the-art approaches in terms of different quality evaluation measures.","PeriodicalId":13240,"journal":{"name":"IEEE MultiMedia","volume":"30 1","pages":"110-118"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE MultiMedia","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MMUL.2023.3270035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

With the prevalence of high-dynamic-range (HDR) display devices, the demand to convert existing standard-dynamic-range television (SDRTV) video content to its corresponding HDR television (HDRTV) counterpart is growing exponentially. Herein, we propose a two-stage learning paradigm with hybrid attention mechanisms to fully exploit spatial, channelwise, and regional correlations for faithfully driving such conversion. Specifically, in the first domain-mapping stage, the depthwise self-attention and global calibration layer are proposed, which adaptively leverage feature intrarelationships to construct better scene representation and achieve engaging SDRTV-to-HDRTV transformation. In the second highlight-generation stage, considering that the overexposed regions potentially lead to detail loss, which brings enormous challenges to the conversion, we propose a regional self-attention module to specifically restore missing highlights. Extensive experimental results on public databases show that our method outperforms state-of-the-art approaches in terms of different quality evaluation measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为高动态范围设备恢复标准动态范围视频:具有混合注意力机制的学习范式
随着高动态范围(HDR)显示设备的普及,将现有标准动态范围电视(SDRTV)视频内容转换为相应的HDRTV视频内容的需求呈指数级增长。在此,我们提出了一个具有混合注意机制的两阶段学习范式,以充分利用空间、渠道和区域相关性来忠实地推动这种转换。具体而言,在第一域映射阶段,提出了深度自关注和全局校准层,该层自适应地利用特征内关系构建更好的场景表示,实现引人入胜的sdrtv到hdrtv转换。在第二个高光生成阶段,考虑到过度曝光区域可能导致细节丢失,给转换带来巨大的挑战,我们提出了一个区域自关注模块来专门恢复缺失的高光。在公共数据库上的大量实验结果表明,我们的方法在不同的质量评估措施方面优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE MultiMedia
IEEE MultiMedia 工程技术-计算机:理论方法
CiteScore
6.40
自引率
3.10%
发文量
59
审稿时长
>12 weeks
期刊介绍: The magazine contains technical information covering a broad range of issues in multimedia systems and applications. Articles discuss research as well as advanced practice in hardware/software and are expected to span the range from theory to working systems. Especially encouraged are papers discussing experiences with new or advanced systems and subsystems. To avoid unnecessary overlap with existing publications, acceptable papers must have a significant focus on aspects unique to multimedia systems and applications. These aspects are likely to be related to the special needs of multimedia information compared to other electronic data, for example, the size requirements of digital media and the importance of time in the representation of such media. The following list is not exhaustive, but is representative of the topics that are covered: Hardware and software for media compression, coding & processing; Media representations & standards for storage, editing, interchange, transmission & presentation; Hardware platforms supporting multimedia applications; Operating systems suitable for multimedia applications; Storage devices & technologies for multimedia information; Network technologies, protocols, architectures & delivery techniques intended for multimedia; Synchronization issues; Multimedia databases; Formalisms for multimedia information systems & applications; Programming paradigms & languages for multimedia; Multimedia user interfaces; Media creation integration editing & management; Creation & modification of multimedia applications.
期刊最新文献
Generative Adversarial Networks for Biomedical Imaging High-performance Embedded System Design for QR Code Recognition with Deep Learning Terrain Segmentation Network in Wild Environments with Hybrid Plus Downsampling Robust Color Image Hashing with NMF and Saliency Map for Copy Detection Development of an Image Encryption Algorithm Based on Compressed Sensing and Chaotic Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1