{"title":"A parametric model of tropical cyclone surface winds for sea and land","authors":"J. Kepert","doi":"10.1175/waf-d-23-0028.1","DOIUrl":null,"url":null,"abstract":"\nParametric models of tropical cyclone winds are widely used for risk assessment. Although tropical cyclones often present their worst wind risk to humanity during landfall, parametric models that represent land-sea differences are rare. This paper presents a parametric model with explicit representation of land-sea differences. Statistical models were developed over each surface of the frictional wind speed reduction from gradient level to 10 m, and of the surface inflow angle, based on about 1200 simulations with a three-dimensional dynamical boundary layer model. The wind profile of Willoughby et al. is used to represent the gradient flow, and a maximum likelihood scheme used to fit this profile to best track data. The mean RMS difference between the statistical and dynamical surface winds within 100 km of the storm centre is 0.78ms−1 and 4.26° over sea, and 1.04ms−1 and 4.59° over land. During landfall, the use of a common gradient-level structure, but different boundary layer schemes, provides dynamical consistency between the estimated winds over sea and land. A simple representation of internal boundary layers is applied near the coast. Analysis of the dynamical simulations revealed substantial consistency with observational studies of the tropical cyclone boundary layer, including that the azimuth of the surface wind maximum is on average 65° from the front of the storm, in the left forward quadrant in the Southern Hemisphere. There was however substantial variability around this figure, with the maximum occurring in the opposite forward quadrant in storms that were intense, and/or had a relatively rapid decrease in wind speed outside of the radius of maximum winds.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0028.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parametric models of tropical cyclone winds are widely used for risk assessment. Although tropical cyclones often present their worst wind risk to humanity during landfall, parametric models that represent land-sea differences are rare. This paper presents a parametric model with explicit representation of land-sea differences. Statistical models were developed over each surface of the frictional wind speed reduction from gradient level to 10 m, and of the surface inflow angle, based on about 1200 simulations with a three-dimensional dynamical boundary layer model. The wind profile of Willoughby et al. is used to represent the gradient flow, and a maximum likelihood scheme used to fit this profile to best track data. The mean RMS difference between the statistical and dynamical surface winds within 100 km of the storm centre is 0.78ms−1 and 4.26° over sea, and 1.04ms−1 and 4.59° over land. During landfall, the use of a common gradient-level structure, but different boundary layer schemes, provides dynamical consistency between the estimated winds over sea and land. A simple representation of internal boundary layers is applied near the coast. Analysis of the dynamical simulations revealed substantial consistency with observational studies of the tropical cyclone boundary layer, including that the azimuth of the surface wind maximum is on average 65° from the front of the storm, in the left forward quadrant in the Southern Hemisphere. There was however substantial variability around this figure, with the maximum occurring in the opposite forward quadrant in storms that were intense, and/or had a relatively rapid decrease in wind speed outside of the radius of maximum winds.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.