Yuhan Liu , He Yan , Qilie Liu , Wei Zhang , Junbin Huang
{"title":"ECO++: Adaptive deep feature fusion target tracking method in complex scene","authors":"Yuhan Liu , He Yan , Qilie Liu , Wei Zhang , Junbin Huang","doi":"10.1016/j.dcan.2022.10.020","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient Convolution Operator (ECO) algorithms have achieved impressive performances in visual tracking. However, its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames. More so, its fixed weight fusion strategy does not use the complementary properties of deep and shallow features. In this paper, we propose a new target tracking method, namely ECO++, using deep feature adaptive fusion in a complex scene, in the following two aspects: First, we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network. Second, we adaptively fuse the deep features, which output through the improved Conformer network, by combining the Peak to Sidelobe Ratio (PSR), frame smoothness scores and adaptive adjustment weight. Extensive experiments on the OTB-2013, OTB-2015, UAV123, and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded, blurred, and fast-moving targets.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 5","pages":"Pages 1352-1364"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822002292","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient Convolution Operator (ECO) algorithms have achieved impressive performances in visual tracking. However, its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames. More so, its fixed weight fusion strategy does not use the complementary properties of deep and shallow features. In this paper, we propose a new target tracking method, namely ECO++, using deep feature adaptive fusion in a complex scene, in the following two aspects: First, we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network. Second, we adaptively fuse the deep features, which output through the improved Conformer network, by combining the Peak to Sidelobe Ratio (PSR), frame smoothness scores and adaptive adjustment weight. Extensive experiments on the OTB-2013, OTB-2015, UAV123, and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded, blurred, and fast-moving targets.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.