Privacy-Preserving Approximate k-Nearest-Neighbors Search that Hides Access, Query and Volume Patterns

A. Boldyreva, Tianxin Tang
{"title":"Privacy-Preserving Approximate k-Nearest-Neighbors Search that Hides Access, Query and Volume Patterns","authors":"A. Boldyreva, Tianxin Tang","doi":"10.2478/popets-2021-0084","DOIUrl":null,"url":null,"abstract":"Abstract We study the problem of privacy-preserving approximate kNN search in an outsourced environment — the client sends the encrypted data to an untrusted server and later can perform secure approximate kNN search and updates. We design a security model and propose a generic construction based on locality-sensitive hashing, symmetric encryption, and an oblivious map. The construction provides very strong security guarantees, not only hiding the information about the data, but also the access, query, and volume patterns. We implement, evaluate efficiency, and compare the performance of two concrete schemes based on an oblivious AVL tree and an oblivious BSkiplist.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2021 1","pages":"549 - 574"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2021-0084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract We study the problem of privacy-preserving approximate kNN search in an outsourced environment — the client sends the encrypted data to an untrusted server and later can perform secure approximate kNN search and updates. We design a security model and propose a generic construction based on locality-sensitive hashing, symmetric encryption, and an oblivious map. The construction provides very strong security guarantees, not only hiding the information about the data, but also the access, query, and volume patterns. We implement, evaluate efficiency, and compare the performance of two concrete schemes based on an oblivious AVL tree and an oblivious BSkiplist.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隐藏访问、查询和容量模式的保护隐私的近似k近邻搜索
摘要我们研究了在外包环境中保护隐私的近似kNN搜索问题——客户端将加密数据发送到不可信的服务器,然后可以执行安全的近似kNN搜索和更新。我们设计了一个安全模型,并提出了一个基于位置敏感哈希、对称加密和遗忘映射的通用结构。该结构提供了非常强大的安全保障,不仅隐藏了有关数据的信息,还隐藏了访问、查询和卷模式。我们实现、评估了两种基于遗忘AVL树和遗忘BSkiplist的具体方案的效率,并对其性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Editors' Introduction Compact and Divisible E-Cash with Threshold Issuance On the Robustness of Topics API to a Re-Identification Attack DP-SIPS: A simpler, more scalable mechanism for differentially private partition selection Privacy-Preserving Federated Recurrent Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1