{"title":"Confinement effects on compressive and ballistic performance of ceramics: a review","authors":"Rui Zhang, B. Han, T. Lu","doi":"10.1080/09506608.2020.1830665","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ceramic materials have been extensively used as armour materials for nearly 50 years and continue to attract great interest in the field of defense technology. As confinement is crucial for ceramics to achieve enhanced performance, it has become indispensable in ceramic armour systems. This review aims to explore the effects of a wide variety of confinement on ceramic performance, so as to provide scientific insights for further exploration and development of ceramic materials and ceramic-based armour systems for both researchers and engineers. This work first characterises multiaxial compressive experiments of ceramics, explores confinement-induced brittle to ductile transition, and presents pressure-dependent micromechanical and phenomenological constitutive models. Subsequently, the change of fracture mode under compression and the reduction of damage extent under projectile impact are separately discussed. Enhancement in ballistic performance by confining and prestressing ceramics is also introduced, with corresponding physical mechanisms explored. Last but not least, insights into future opportunities and challenges are presented.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"66 1","pages":"287 - 312"},"PeriodicalIF":16.8000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2020.1830665","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2020.1830665","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 25
Abstract
ABSTRACT Ceramic materials have been extensively used as armour materials for nearly 50 years and continue to attract great interest in the field of defense technology. As confinement is crucial for ceramics to achieve enhanced performance, it has become indispensable in ceramic armour systems. This review aims to explore the effects of a wide variety of confinement on ceramic performance, so as to provide scientific insights for further exploration and development of ceramic materials and ceramic-based armour systems for both researchers and engineers. This work first characterises multiaxial compressive experiments of ceramics, explores confinement-induced brittle to ductile transition, and presents pressure-dependent micromechanical and phenomenological constitutive models. Subsequently, the change of fracture mode under compression and the reduction of damage extent under projectile impact are separately discussed. Enhancement in ballistic performance by confining and prestressing ceramics is also introduced, with corresponding physical mechanisms explored. Last but not least, insights into future opportunities and challenges are presented.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.