Estimation of the covariance structure from SNP allele frequencies

IF 0.9 4区 数学 Q3 Mathematics Statistical Applications in Genetics and Molecular Biology Pub Date : 2022-01-01 DOI:10.1515/sagmb-2022-0005
J. van Waaij, Zilong Li, C. Wiuf
{"title":"Estimation of the covariance structure from SNP allele frequencies","authors":"J. van Waaij, Zilong Li, C. Wiuf","doi":"10.1515/sagmb-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract We propose two new statistics, V ̂ $\\hat{V}$ and S ̂ $\\hat{S}$ , to disentangle the population history of related populations from SNP frequency data. If the populations are related by a tree, we show by theoretical means as well as by simulation that the new statistics are able to identify the root of a tree correctly, in contrast to standard statistics, such as the observed matrix of F 2-statistics (distances between pairs of populations). The statistic V ̂ $\\hat{V}$ is obtained by averaging over all SNPs (similar to standard statistics). Its expectation is the true covariance matrix of the observed population SNP frequencies, offset by a matrix with identical entries. In contrast, the statistic S ̂ $\\hat{S}$ is put in a Bayesian context and is obtained by averaging over pairs of SNPs, such that each SNP is only used once. It thus makes use of the joint distribution of pairs of SNPs. In addition, we provide a number of novel mathematical results about old and new statistics, and their mutual relationship.","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2022-0005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We propose two new statistics, V ̂ $\hat{V}$ and S ̂ $\hat{S}$ , to disentangle the population history of related populations from SNP frequency data. If the populations are related by a tree, we show by theoretical means as well as by simulation that the new statistics are able to identify the root of a tree correctly, in contrast to standard statistics, such as the observed matrix of F 2-statistics (distances between pairs of populations). The statistic V ̂ $\hat{V}$ is obtained by averaging over all SNPs (similar to standard statistics). Its expectation is the true covariance matrix of the observed population SNP frequencies, offset by a matrix with identical entries. In contrast, the statistic S ̂ $\hat{S}$ is put in a Bayesian context and is obtained by averaging over pairs of SNPs, such that each SNP is only used once. It thus makes use of the joint distribution of pairs of SNPs. In addition, we provide a number of novel mathematical results about old and new statistics, and their mutual relationship.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从SNP等位基因频率估计协方差结构
摘要:本文提出了两个新的统计量V´$\hat{V}$和S´$\hat{S}$,用于从SNP频率数据中分离相关种群的种群历史。如果种群与树相关,我们通过理论手段和模拟表明,与标准统计(如观察到的f2统计矩阵(种群对之间的距离))相比,新的统计能够正确地识别树的根。统计量V´$\hat{V}$是通过对所有snp进行平均得到的(类似于标准统计量)。它的期望是观察到的总体SNP频率的真实协方差矩阵,由具有相同条目的矩阵抵消。相比之下,统计S´$\hat{S}$被放在贝叶斯上下文中,并通过对SNP进行平均来获得,这样每个SNP只使用一次。因此,它利用了snp对的联合分布。此外,我们还提供了一些关于新旧统计及其相互关系的新颖数学结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
期刊最新文献
Empirically adjusted fixed-effects meta-analysis methods in genomic studies. A CNN-CBAM-BIGRU model for protein function prediction. A heavy-tailed model for analyzing miRNA-seq raw read counts. Flexible model-based non-negative matrix factorization with application to mutational signatures. Choice of baseline hazards in joint modeling of longitudinal and time-to-event cancer survival data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1