A combination of PSO-ANN hybrid algorithm and genetic algorithm to optimize technological parameters during milling 2017A alloy

IF 4 Q2 ENGINEERING, INDUSTRIAL Journal of Industrial and Production Engineering Pub Date : 2023-08-09 DOI:10.1080/21681015.2023.2243312
Kamel Bousnina, Anis Hamza, N. Ben yahia
{"title":"A combination of PSO-ANN hybrid algorithm and genetic algorithm to optimize technological parameters during milling 2017A alloy","authors":"Kamel Bousnina, Anis Hamza, N. Ben yahia","doi":"10.1080/21681015.2023.2243312","DOIUrl":null,"url":null,"abstract":"ABSTRACT Numerically controlled machine tools are commonly used in metalworking processes due to their precision and reproducibility. However, finding the appropriate cutting parameters and machining process using simple machining features is limited, as parts may have complex interacting machining features. This study contributes to solving this problem by integrating PSO-ANN hybrid algorithm and genetic algorithm, to predict and optimize roughness, cost, and energy consumption for interactive features. From the research carried out, it was found that the output variables were highly correlated, with coefficients above 0.97%. In addition, it was demonstrated that proper selection of machining techniques and sequences could lead to a significant reduction in energy consumption, with a 99.25% variation between minimum and maximum values. The genetic algorithm identified the optimum cutting parameters, namely Vc = 25.45 m/min, f = 0.111 mm/rev, and ap = 0.58 mm, which led to a considerable improvement in the results obtained. Graphical Abstract","PeriodicalId":16024,"journal":{"name":"Journal of Industrial and Production Engineering","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Production Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681015.2023.2243312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Numerically controlled machine tools are commonly used in metalworking processes due to their precision and reproducibility. However, finding the appropriate cutting parameters and machining process using simple machining features is limited, as parts may have complex interacting machining features. This study contributes to solving this problem by integrating PSO-ANN hybrid algorithm and genetic algorithm, to predict and optimize roughness, cost, and energy consumption for interactive features. From the research carried out, it was found that the output variables were highly correlated, with coefficients above 0.97%. In addition, it was demonstrated that proper selection of machining techniques and sequences could lead to a significant reduction in energy consumption, with a 99.25% variation between minimum and maximum values. The genetic algorithm identified the optimum cutting parameters, namely Vc = 25.45 m/min, f = 0.111 mm/rev, and ap = 0.58 mm, which led to a considerable improvement in the results obtained. Graphical Abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSO-ANN混合算法与遗传算法相结合优化2017A合金铣削工艺参数
数控机床由于其精度和再现性,通常用于金属加工过程。然而,使用简单的加工特征找到合适的切削参数和加工过程是有限的,因为零件可能具有复杂的相互作用的加工特征。本研究通过将PSO-ANN混合算法和遗传算法相结合,预测和优化交互特征的粗糙度、成本和能耗,为解决这一问题做出了贡献。从所进行的研究中发现,输出变量高度相关,系数超过0.97%。此外,还表明,正确选择加工技术和顺序可以显著降低能耗,最小值和最大值之间的变化率为99.25%。遗传算法确定了最佳切削参数,即Vc = 25.45 米/分钟,f = 0.111 mm/rev和ap = 0.58 mm,这导致了所获得的结果的显著改进。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
21
期刊最新文献
Hierarchical game optimization of integrated energy systems with grid-forming energy storage: improved mountaineering team optimization algorithm A cognitive digital twin for process chain anomaly detection and bottleneck analysis A readiness assessment model for human systems management digitalization in industrial organizations Dual channel closed-loop supply chain coordination with exchange policy, sales efforts and green innovation under uncertain market Measuring total productive maintenance success: a new industrial evaluation using fuzzy SERVQUAL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1