{"title":"Optimization of structural parameters and numerical simulation of stress field of composite crucible based on the indirect coupling method","authors":"Chunlei Jiang","doi":"10.1515/cls-2022-0198","DOIUrl":null,"url":null,"abstract":"Abstract The research starts with the treatment of the multiscale transmission problem and establishes the electromagnetic solidification transmission coupling mathematical model based on the indirect coupling method. It uses the three-dimensional magnetic field finite element theory to establish a three-dimensional crucible structure continuous casting model built on the electromagnetic solidification transmission coupling mathematical model. This model is used to optimize the parameters of the composite crucible structure and to simulate electromagnetic transmission and braking phenomena. The results show that the L-shaped static magnetic field has a more potent inhibition and a guidance effect on melt circulation. The braking effect of the actual magnetic field on the downward impact is worse. Under the influence of an L-shaped magnetic field, the flow velocity of the melt is better, and the flow state distribution is more smooth and uniform. The computational efficiency test results show that the conversion calculation time of the method designed in this study is 18.03 min. The total calculation time is 680.48 min, which is superior to traditional methods. It proves that this model can accurately analyze the magnetic field coupling problem and at the same time ensure the superiority of its computing efficiency.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The research starts with the treatment of the multiscale transmission problem and establishes the electromagnetic solidification transmission coupling mathematical model based on the indirect coupling method. It uses the three-dimensional magnetic field finite element theory to establish a three-dimensional crucible structure continuous casting model built on the electromagnetic solidification transmission coupling mathematical model. This model is used to optimize the parameters of the composite crucible structure and to simulate electromagnetic transmission and braking phenomena. The results show that the L-shaped static magnetic field has a more potent inhibition and a guidance effect on melt circulation. The braking effect of the actual magnetic field on the downward impact is worse. Under the influence of an L-shaped magnetic field, the flow velocity of the melt is better, and the flow state distribution is more smooth and uniform. The computational efficiency test results show that the conversion calculation time of the method designed in this study is 18.03 min. The total calculation time is 680.48 min, which is superior to traditional methods. It proves that this model can accurately analyze the magnetic field coupling problem and at the same time ensure the superiority of its computing efficiency.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.