Elif Çiçek, M. Akin, Furkan Uysal, Reyhan Merve Topcu Aytas
{"title":"Comparison of traffic accident injury severity prediction models with explainable machine learning","authors":"Elif Çiçek, M. Akin, Furkan Uysal, Reyhan Merve Topcu Aytas","doi":"10.1080/19427867.2023.2214758","DOIUrl":null,"url":null,"abstract":"ABSTRACT Traffic accidents are still the main cause of fatalities, injuries and significant delays in highways. Understanding the accident contributing factor is imperative to increase safety in a traffic network. Recent research confirms that predictive modeling is an important tool to comprehend accident contributing factors. However, little effort has been put forward to explain complex machine learning models and their feature effects in accident prediction models. Thus, this study aims to build predictive models based on different machine learning methods and tries to explain the most contributing factors by using Shapley values which was developed based on game theory. Decision Trees, Neural Networks with Multilayer Perceptron (MLP), Support Vector Classifier, Case-Based Reasoning and Naive Bayes Classifier were used to predict the injury severity in accidents. Belt usage, alcohol consumption and speed violations were found as the most effective features and MLP gave the highest accuracy among all the applied predictive models.","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"15 1","pages":"1043 - 1054"},"PeriodicalIF":3.3000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19427867.2023.2214758","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Traffic accidents are still the main cause of fatalities, injuries and significant delays in highways. Understanding the accident contributing factor is imperative to increase safety in a traffic network. Recent research confirms that predictive modeling is an important tool to comprehend accident contributing factors. However, little effort has been put forward to explain complex machine learning models and their feature effects in accident prediction models. Thus, this study aims to build predictive models based on different machine learning methods and tries to explain the most contributing factors by using Shapley values which was developed based on game theory. Decision Trees, Neural Networks with Multilayer Perceptron (MLP), Support Vector Classifier, Case-Based Reasoning and Naive Bayes Classifier were used to predict the injury severity in accidents. Belt usage, alcohol consumption and speed violations were found as the most effective features and MLP gave the highest accuracy among all the applied predictive models.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.